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=
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|
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the magnetic flux density

Eta component of B in region I

vii




BnII Eta component of B in region II
‘ BnIII Eta component of B in region III
BnIv Eta component of B in region IV
an Eta component of B in region V :
i Be Theta component of the magnetic flux density :
; dv Elemental volume %
. E} Unit normal vector in radial direction i
En Unit normal vector in eta direction
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‘ €)sey,8e, Metric coefficients for a prolate spheroidal coordinate system
¢ —
- H Magnetic field intensity
; ﬁ; Externally applied uniform field
Htl Tangential component of H in medium 1
r th Tangential component of H in medium 2
k Ei Magnetic field intensity in medium 1
: ﬁé Magnetic field intensity in medium 2
' I Electric current
k J Magnitude of J
? s
| J Electric current density
Jr Radial component of J
js Surface current density
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EXECUTIVE SUMMARY

OBJECTIVE

The objective of this theoretical work was to derive solutions to static
ferromagnetic problems that include current-carrying coils, uniform inducing fields,
and linear and homogeneous ferromagnetic bodies. The solutions are intended to be
used as classical benchmark validation problems for comparison with solutions to
ferromagnetic problems obtained by various numerical techniques such as the finite
difference method, the finite element method, and the integral equation iterative

solution method.

APPROACH
After deriving the governing differential equations from Maxwell's equations
for classical magnetostatic field theory, the method of separation of variables

was employed to obtain the problem solution.

RESULTS

The magnetic induction was derived for several configurations of ferromagnetic
spherical and prolate spheroidal bodies (hollow and solid) with internal and/or
external infinitesimally thin spherical and spheroidal current bands, respectively.
The magnetic induction is presented for ferromagnetic spherical and spheroidal
bodies in a constant inducing field of arbitrary orientation. The ferromagnetic
bodies were assumed to be linear and homogeneous. The reduction of the current
band problem solutions to that of a current band in a vacuum is shown when the
permeability of the ferromagnetic body is allowed to approach that of a vacuum.
The application of the superposition principle, to obtain a total magnetic field
solution for the case of a ferromagnetic body (hollow or solid) surrounding and/or
surrounded by a current band and immersed in a uniform inducing field of arbitrary

direction, is discussed,

xii
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ABSTRACT

Magnetic induction is calculated for several configura-
tions of ferromagnetic spherical and prolate spheroidal
bodies (hollow and solid) with internal and/or external
infinitesimally thin spherical and spheroidal current bands,
respectively, Magnetic induction is presented for ferro-
magnetic spherical and spheroidal bodies in a constant
inducing field of arbitrary orientation. The ferromagnetic
bodies are assumed to be linear and homogeneous. The reduc-
tion of the current band problem solutions to that of a
current band in vacuum is shown when the permeability of the
ferromagnetic body is allowed to approach that of vacuum.
The application of the superposition principle to obtain a
total magnetic field solution for the case of a ferromag-
netic body (hollow or solid) surrounding and/or surrounded
by a current band and immersed in a uniform inducing field
of arbitrary direction, is discussed.

ADMINISTRATIVE INFORMATION
This work was performed under Program Element 11221N, Project B00O5, Task Area
B0005-SL-001, and Work Unit 2704-120,

INTRODUCTION

It is well known that exact analytical solutions of Maxwell's equations using
classical formulation have been limited to body shapes and inhomogeneities that
conform to a few separable coordinate systems. With the application of modern
digital computers and numerical methods to obtain solutions of many magnetostatic
field problems for practical applications, the need for classical benchmark valida~
tion problems arose. This theoretical report presents solutions of Maxwell's
equations for magnetostatic problems, It summarizes twelve different problem solu-
tions and discusses how to obtain the total field solution to many others through
the application of the superposition principle. Many of these problem solutions
may be used as benchmark type classical solutions and for research in studying
magnetostatic effects., In addition, the solution techniques and verification
methods presented in this report show the fundamental techniques of solving

magnetostatic boundary value problem solutions of Laplace's and Poisson's equations

for spherical and prolate spheroidal coordinate systems.
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COORDINATE SYSTEMS

SPHERICAL COORDINATE SYSTEM

The spherical coordinate system is formed by the intersection of coordinate
surfaces of concentric spheres, cones with apexes at the center of the spheres,
and half planes emerging from the axis of the cone. The three coordinates of a
point are the radius r of a sphere, the half-angle 6 of the cone, and the angle {
between a half-plane and the x axis. Figure 1 depicts the spherical coordinate sys-
tem, With each point in the spherical coordinate system, there are associated

three mutually perpendicular unit vectors gr’ 86’ and Ew.

z
4
8
A
e
M(r, 0, ¥) v
!
A
| Ng
|
‘ -y
[ >
{
|
|
| 0 <r <oo
N o8 <
X O<ll/<21l'
X = rsinf cos Y
Y = rsinfsin {
Z =rcosf

Figure 1 - Spherical Coordinate System
and the Corresponding Unit Vectors




PROLATE SPHEROIDAL COORDINATE SYSTEM

The prolate spheroidal coordinate system can be formed by rotating the two-
dimensional elliptic coordinate system, whose traces in a plane are confocal
ellipses and hyperbolas, about the major axis of the ellipse.l’2

Flammer2 notes that it is customary to make the z-axis the axis of revolution.
Figure 2 depicts the three-dimensional prolate spheroidal coordinate system. In
this case, the coordinate surfaces are: prolate spheroids for n = constant; hyper-
boloids of two sheets for 6 = constant; meridian planes for y = constant. The

prolate spheroidal coordinates shown in Figure 2 are related to rectangular

coordinates by the following transformation equations:

X = a sinh n sin 6 cos ¥ (1a)
y = 4 sinh n sin 0 sin ¢ (1b)
z = a cosh n cos 6 (1lc)

where 0 <n <
0<6<m

0 <y <2m

We have denoted the interfocal distance by 2a and the prolate spheroidal coordinates
by (n,8,9).
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Figure 2 - Prolate Spheroidal Coordinate System




BASIC EQUATIONS

FIELD EQUATIONS

The formulation of the present boundary value problems implies the solution
of Maxwell's equations for each medium subject to the classical boundary conditions.
Starting with the general form of Maxwell's equations and the constitutive relations

between E and D and between B and H as given below, a general solution may be

derived.
R )] 5.=_ 0B
VXH—J+§—t VXE——at
(2a)*
V-D=p V-B=0
D=¢c E+P B=yu (HE+M (2b)
where H = magnetic field intensity (A/m)**
— 2
J = electric current density (A/m")
D = electric flux density (C/mz)
E = electric field intensity (V/m)
B = magnetic flux density (T or Wb/mz)
p = free charge density (C/m3)
P = polarization (C/mz)
M = magnetization (A/m)
€, = permittivity of vacuum = 8.85 pF/m
My = permeability of vacuum = 400m nH/m

*The del operator V is defined with respect to the rectangular coordinate sys~
tem and is strictly valid in a rectangular coordinate system only, Very often Vx
and V . are used generally as equivalent symbols for curl and divergence. This use
is followed in this report.
**Def initions of symbols are given on page vii.




For the magnetostatic case, the applicable Maxwell's Equations (2a) reduce to

5 xlﬁ = 3 V*B=20 (3a)
and the constitutive relation from Equations (2b) is

B = uo(im_a) (3b)

In general, for ferromagnetic materials,‘f is a nonlinear function of H
B = £(H) (4)

where, as shown in Figure 3a, B is not a single valued function of ﬁ. The function
£(H) depends upon the magnetic history of the material, that is, how the metal
became magnetized. This is referred to as hysteresis. It is also noted that any
wmagnetic property of a ferromagnetic material has meaning only if it is considered
together with its complete magnetic history.

In certain practical engineering problems, the variation in the magnetic field
intensity is small, and the functional relationship between B and H is approximately
linear (see Figure 3b). For the linear case where the material is isotropic, the

magnetic induction B is related to the field intenSity.ﬁ by the relationship

B=wu, (x,#1) H=wuu H=1H (5)
where X = magnetic susceptibility (dimensionless)
U = magnetic permeability of media (H/m)
(xm+l) =W, = relative permeability (dimensionless)
My = permeability of vacuum = 4007 nH/m

This report assumes that the ferromagnetic bodies have isotropic and linear material

properties,
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FLUX DENSITY B, (Wb/m?)

MAGNETIC FIELD INTENSITY H, (A/m)

Figure 3a - Curve for a Ferromagnetic Material

ﬂ FLUX DENSITY B, (Wb/m2)

/ MAGNETIC FIELD INTENSITY H, (A/m)

Figure 3b ~ Curve for a Ferromagnetic Material
at Low Inducing Fields

Figure 3 - Typical Magnetization Curve

7




..r:'."" "

TR "_ At il -rr" - ‘:“'_;‘,_.’;‘W_. > ,' .’-;‘S b chcl
. . PRI

TEYTRW WL

R

———T

SUPERPOSITION PRINCIPLE

Maxwell's Equations (2a) are linear partial differential equations. As a con-
sequence of this linearity, the superposition principle states that, generally, any
sum of the solutions of Maxwell's equations 1s again their solution. Combined with
the uniqueness theorem, which states that only one solution of Maxwell's equation
satisfies any set of prescribed boundary conditions, the superposition principle
justifies any series or sum solution of Maxwell's equations,

Thus, if one desires to find the magnetic field solution to a system consisting
of a ferromagnetic body in a uniform field and in the presence of current carrying
conductors, the superposition principle may be applied. The magnetic field solution
for a ferromagnetic body in a uniform field only is obtained first, then the magne-
tic field solution for the same ferromagnetic body in the presence of the current
carrying conductors only is determined. The total magnetic field solution is then
the sum of the two independent solutions. This technique allows, for example, one
to find the total field solution for a hollow prolate spheroid immersed in a uniform

field and surrounded by a current band.
MAGNETIC INDUCTION OF BODIES IN UNIFORM FIELDS

For the case of a ferromagnetic body of permeability u in a uniform field in

the absence of current carrying conductors, Maxwell's Equations (2a) reduce to

H=0 (6a)

<l
™

. B

<l
n
(o]

(6b)

Because the curl of the gradient of any scalar function f is found to be identically
zero [5£§f=0] the magnetic field intensity'ﬁ is derivable as the gradient of a

scalar potential ¢m. That is

H=-% (7
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where ¢m is the magnetic scalar potential (in amperes). Using Equationms (5) and
(7) to find the magnetic flux density and substituting the result into Equation (6b)

reduces to

(8) ]

]
o

Ve

which is known as Laplace's equation. This is the governing differential equation

for the problem of a body immersed in a uniform field.
The general boundary conditions to be satisfied at the interface of dissimilar

materials may be derived from the limiting integral form of Maxwell's equations and

are given by

a¢ml 8¢m2

or By =By of My 3p =¥ Th

Ty v (By=By) = (9a)

1
(=

(9b)

|

n

12 X (Hy-H;) =0 or H, =H, or ¢, =0,

where the subscripts 1 and 2 indicate the media under consideration, and_x_l12 denotes

the unit vector normal to the interface and directed from medium 1 into medium 2.

MAGNETIC INDUCTION OF BODIES DUE TO CURRENT CARRYING CONDUCTORS
The divergenceless (V.B=0) nature of the magnetic flux density in conjunction
with the fact that the divergence of the curl of any vector function is zero

[V'(VXF)=O] allows the introduction of the magnetic vector potential field (A)




hi 20

where A is the magnetostatic vector potential function in webers per meter. The
substitution of Equation (10) into Equation (3a) gives the fundamental equation of

the vector potential of the magnetostatic field.

7 x (_V—XX) - (—V—XX) xV (11)

=i
= |
I
[

For homogeneous materials, as assumed in this report, the magnetic permeability is

spatially invariant. Hence

5%-- 0 (12)
and Equation (11) reduces to
‘V‘x-\_/_xz= U? (13)
Using the vector identity
€x€xx=€(€-A—)-$A (14)
Equation (13) becomes
V(V-A) - WA =] (15)

The magnetostatic vector potential is characterized by the important property that

its divergence can be conveniently chosen to be zero.

VA =0 (16)

10



Equation (15) reduces to the vector Poisson differential equation.

®A=-uJ (17)

This is the governing equation for our calculations.
The general boundary conditions to be satisfied at the interfaces of stationary
dissimilar media may be derived from the limiting integral forms of Maxwell's equa-

tions and are given by

n, - (BZ-Bl) =0 or Bnl an (18a)

ny, X (HZ_HI) = Js or H .,-H ., =1J (18b)

where the subscripts 1 and 2 indicate the media under consideration, and HiZ denotes
the unit vector normal to the interface and is directed from medium 1 into medium 2.
In the case where the materials are linear and isotropic, Equations (18a) and (18b)

become

Ny, - (uZHZ—ulHI) =0 (18c)
B. B -

n, x (- L) QR (184)
U2 Ul S

where 3; is a true surface current density that may exist at the interface. At an

interface where 3; = 0, Equations (18b) and (18d) need to be modified accordingly.

11



; SOLUTIONS FOR SPHERICAL BODIES

2

ﬁ SOLID SPHERE OR SPHERICAL SHELL IN A UNIFORM FIELD OF ARBITRARY DIRECTION

' Several important types of problems relating to magnetized bodies in an exter-
¥ nal magnetic field have been solved3’4’5 by determining the solution to Laplace's

ni equation for the magnetic scalar potential. Generally, these solutions have been
-&;' derived for the case of the uniform external magnetic field in the direction of the
ks z axis of a spherical coordinate system. Both constant external field problems,

i:: solid and shell, were solved and programmed on the digital computer by D.A. Nixon of
ié the Center, for the case of an arbitrarily orientated external magnetic field.6

The solutions found in Reference 6 were presented in Cartesian coordinates. The

problem of finding the magnetic induction for an infinitesimally thin current band

3

v;;‘ surrounding a spherical shell7 can be generalized to include an external magnetic
i field., Linear superposition may be applied to find the solution in this case.

%’ Therefore, in Appendix A, the Cartesian expressions were converted to spherical
_; coordinates to be compatible with other problem solutions in this section of the
> report.

!

'{i SOLID SPHERE SURROUNDED BY AN INFINITESIMALLY THIN SPHERICAL CURRENT BAND

We now solve the boundary problem of a ferromagnetic sphere of radius Rl and
homogeneous permeability Hy surrounded by an infinitesimally thin current band of
radius R2 having a constant current density J. Figure 4 identifies the three
regions of interest. Regions II and III have a permeability equal to the
permcability of vacuuw Hoo whiich for convenience will be labeled - The problem's
spherical symmetry suggests that a spherical coordinate system such as that shown

in Figure 1 be used in the problem solution,

12
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Ampere's law states

H=17 (19)

<
%

and, because V * B = 0, the induction B must be the curl of some vector field A.
The governing differential equation for X, when homogeneous and linear materials are

concidered, is from Equation (11).

|
1l

b0 ~uJ (20)

*We note that a distinction is drawn between the operator v called the scalar
Laplacian operator and the vector Laplacian operator designated by ¥X . The vector

Poisson's equation in rectan%ular coordinates can be treated as three uncoupled
scalar equations as shown below.

where XA, = VZA = uJ, for i = x,y,z. However, if the vector Poisson's equation
is resolved into drthogdnal components in other coordinate systems, the differential
operation mixes the components together giving coupled equations as shown below for
spherical coordinates.

14




@— azA aAr 2 BZAr cot B aAr
A=¢ + 2 -2 A 4+ + —
r 8r2 or r2 T r2 ae2 r2 90
3%a 3A 3A
+ 1 _2 8 2 cot? A 2 v
r s:Ln2 6 3 r2 %0 r2 8 r2 sin € v
3a 3A A 3%a 3A 3%a
~ 0 2 0 3] 1 0 cot © ) 1 8
tel T T R Sy B ST R R R
or or r" sin® 8 r° 30 r r° sin® 0 3y
3A 3A 224 a4 5%
2 r 2cot 8 Y -~ '] Y 1 1 Y
U I R RN U YA T 7Nt 27
r“sin © or r° sin” 6 r- ob
6 3A4) 1 82A 2 9A aAe
+ co; =+ - Y + gmz_ +2cot O 50
r r“ sin® 6 dY r'sin © r° sin 8 v

=J% + Je.+ J e

The general expression in spherical coordinates for a current density is

J=eJ +eJd, +eld (21)

s e ke A 1TSS R W S SR+ 10 4P e, B gAn T e




-

o

A SRt o e

M

where the @ defines unit orthogonal vectors. For stationary currents in vacuum,

the vector potential function that satisfies Equation (20) is given by

y dv (22)

M
- 0
A'Z‘ﬁf

elemental volume in the current-carrying region

where dv

'
r

distance between the field point where A is being determined and dv at
the source point.

From Equation (22) we see that the elemental vector potential dA, due to a cur-
rent element Jdv, is in the same direction as J. It is well known from this fact
that the lines of the magnetic vector potential A are circles centered about the
coil or loop axis. The magnitude of A along such a circle is constant, which means
that A is a function of the spherical coordinates r and 9 only. Therefore, we know
in advance for this problem that AW is the only component of A existing at the field
point. The infinitesimally thin band of current, shown in Figure 4, has only an

azimuthal or y component, which is a function of r and 9, and lies on the boundary

between regions II and III (i.e., r=R2). For this current, Equation (21) reduces to

0 , if 9 <@ or 6 >0
T = 1 2 (23)

Therefore, Equation (20) has only an azimuthal component and can be expressed as

aAw = &Aw(r,ﬂ) = 0 (in regions I through 1I1) (24)

16
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When the vector Laplacian ¥X 1is expanded in spherical coordinates, Equation (24)
can be written as

Aw 2 aAw g Aw cot O BAw Aw _ in regions I
7ttt + R I N

1
= (25)
5y sr 2 592 2 2 sin 8 through III

In order to solve Equation {25) it is necessary to obtain the general solution in

regions I through III. Thus, by multiplying Equation (25) by r2 we obtain

2.2 2
r %A 2rdA 9" A 2A A
2‘$ + P v + Zw + cot © séy- - ———%}—- =0 (26)
ot ' 29 sin® 6

Applying the method of separation of variables, let us assume that AW can be

expressed as a product of two functions

A¢ = R(r)0(0) (27)

where R(r) is a function of r only and O(8) of O only, Substituting this form of

the vector potential Aw into Equation (26), we have, after separation of variables

a’R(x) | 2 dR(r) _ p(p+LR(x)
2

2 r dr =0 (28a)
dr

r

. v

17




2
w + cot © dgée) + | p(ptl) - 1—2] 0(8)
do sin® 6

L}
o

(28b)

where the separation constant is p(p+l) and p is an integer from one to infinity.

'{
5 The differential equation

2 2
i fL{% + cot® fg; +{p(pt) - —5—|0=¢8 (29)
< do sin” 9
A J
2 has, as a general solution,
& 0(8) = 0 (8) = C_P" (cos 8) + D Q" (cos 6 30
4 (8) = 0,(8) = CpPT (cos 8) + D Q7 ) (30)
&,
; Comparison of Equations (28b) and (29) shows that in Equation (29) m2 = 1, This

requires that m always be unity. The solutions of Equations (28a) and (28b) are

then expressed as

R(r) = Rp(r) = A’prp + B;r'(p”) (31a)

_ _ 1 1
0(8) = Op(@) = CpPp(cos 8) + Dpr(cos 0) (31b)

The associated Legendre functions of the first and second kind are designated as

Pz(cos 1) and Qg (cos 9), respectively., Therefore, the general solution of

18




Equation (25) in regions I through III may be formed from the product of the solu-
tions in Equation (31), which yields

A = =
" R(r)e(6) > R,(r)0 (6) (32a)
p=1
o0 B, .
- ' P, P 1 1
pZ=l I oD <CpPp(cos 8)+D_Q (cos e)> (32b)

In the spherical case, associated Legendre functions of the second kind are infinite
at cos 8 = 1, and, thus, cannot be included when the region under consideration
includes the symmetry axis. Therefore, the constant Dp must be set equal to zero,

and Equation (32) reduces to

o B
- p 2 1
A, = pZ=:1 (Apr + -——-—r(p+1)> P (cos 6) (33)

where A = A C_and B_ = B'C_.
p PP p PP
The form of the potential in each of the regions (I through III) is determined

from Equation (33). These magnetostatic vector potentials in regions I through III

are:

. 2: (Aplrp) P;(cos 8) (34a)
p=1

AI=A¢

19




.

B
- - p, _p2_ | ! 8 34b
Arp AwII Z; Apzr + r(p+1) Pp(cos ) (34b)

w | B
- - —p3 | pt 4
At AMH :@1 r(p+l)] Pp(COs 8) (34c)
-

where, for the AwI component, Bpl 0 because at r = 0 the potential must be finite

and, for the AwIII

must remain finite.

component , Ap3 0 because as r'approaches infinity the potential
At each interface, the basic laws of magnetostatics in Equations (3a) reduce to
boundary conditions on B and H that can be used to evaluate the four constants in
Equation (34). From Equations (18a), the normal component of B across each boundary
must be continuous, i.e., (§é¥§i)-ﬁi2 = 0 where the quantity Eiz is the unit outward
normal to the surface, This provides the following boundary conditions which must

he satisfied by the solution in Equation (34) for each region.

BrI = BrII at r = Rl (35a)

BrII = BrIII at r = R, (35b)

The normal component of the magnetic field Br is expressed in terms of the

vector potential as

B_ = (VxA) (36a)




t
1 d
= —————— — 8 A 36b
B = T sin© 36 (sin 1P) (260) !

.

Y

v

Ez ] - - NI

a e e.r e r sin

~ T 3] 1

. where B = VxA = L g— _3_6_ %"

} i r" sin 6 t 9 v

k; N

é 1 0 0 Awr sin ©

3
>
b
£ 1
g- J However, because the vector potentials in each region are functions of Pp (cos 6)
- |

“ | we can simplify Equation (35) to constraints on A‘P
-
s
"

3 & AI = AII at r = Rl (37a)

|

r I

E AII = AIII at r = R2 (37b)
The second set of boundary conditions is obtained from Equation (18b). The tan-

L gential component of H across each boundary must satisfy the relationship

i

E ny, x (Hy-Hp) = J (38)




. 2

where js (which equals J(8)) is the real surface current density in the limit of
vanishing width between the two regions. Using the relationship B = uﬁ; Equation

(38) may be expressed as

-5 - == = 40) (39)

B, = (7xA), = - % ki [rAv] (40)

From Equations (38), (39), ana (40), the tangential components in regions I

through III must satisfy the relationships

Lll - 37 II) + —E *; 5;‘ (I'AI) 0 atr = Rl (Ala)

II) J(®) atr =R (41b)

The peneral expressions for the potentials in each region (Equation (34)) are
then subst ituted into the boundary conditions (Equations (37) and (41)) and solved
for the constants Api and Bpi' There are four algebraic equations with four

unknowns and the potential in each region can then be specifically determined. The
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four boundary value equations that must be solved for the coefficients are given

below (where the index p is odd only and understood to take on values from 1 to =).
It is noted that the current Jw(e) must be expanded into a set of associated
Legendre functions in order to evaluate the constants Api and Bpi' The detailed
expansion is in the section of Reference 7 entitled "Expansion of the Current

(Jw(e)) in Associated Lengendre Polynomials."

P _ p -(ptl)
Alel = [Aszl +szR1 jl (42a)
p -(p+l) | _ -(ptl)
[APZRZ +Bp2R2 ] = Bp3[R2 ] (42b)

1 (p-1) -(p+2) 1 (p-1
- A, (p+1)R - B_pR Lo - |
My [pz 1 p2' 1 ] + n, [Apl(pﬂ)R1 ] 0 (420)

J_(6)

1 -(p+2) 1 (p-1) _ -(p+2)| _
™ [Bp3pR2 ] + 0 [}pz(p+l)R2 posz ]

P;(cos 0)

(42d)

The solutjon of these equations to obtain the coefficients yields (a detailed

derivation is given in Appendix B):
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ST ey o

" M,J (8
1 - E_ ._Tl_Ri_l_
U1/ p (cos 8)

sz = (43a)
¢ p+1)) (p-1)
( Rl (2 +l)R (l + — ™ (p+l>
J (&
A2 = L i i (430)
P p- a
(2p+l)R2 Pp(cos )
uyJ (0)
6-2) ]
5 1/ p )
[“1Jp( )] ) P, (cos ) “30)
(p-1) 1
(2p+1)R P (cos 8) (p-1)
2 P (2p+1)R, <1 + £ (p+l >
wyJ ¢ v u,J (3)
Tli—’“R?Mn < _£>JL__~_ (43d)
PP (cos ") ~ P " (cos 6)
- - {2
(sz)Rgp-l) Rl(~p+1) (2p+1)R, (p- 1) (1 + -2 (p+l )
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The coefficients A and Bpi

pi

can be determined from Equations (43), and Equations

(34) can now be used to specify the potentials AI’ AII’ and Ay in regions I through

I1I. The normal (Br) and tangential (Be) components of the magnetic induction in

regions I through III can be determined, by using Equations (36) and (40), to be:

B81 =.i§: (p+1) Aplr(p ) Pp (cos 0)
p=1
e 1 (-1 3 [.. 1
BrI = géi Sin B Aplr G [%1n 6 Pp (cos 6)]
B = -Z [A (p+1) (p-1) _ —(p+2):] 1
611 o1 Lp2 P PB )T P (cos 6)
_ ¥ 1 (p-1)
BrII 2: sin O [Aer + Bp2
p=1
- < -(p+2) 1
BGIII ; [po3r ] Pp (cos 6)
p=1
.5 1 ~(p+2) B 1 )
B 111 g;l - Bp3r =5 (sine Pp (cos 8)

*(P+2ﬂ 1,
r P {cos e))(aad)

(44a)

(44b)

(44c)

(44e)

(441)




The magnetic vector potential, Awl WII

are derived for an infinitesimally thin current band in a homogeneous medium of

in the inner region and A in the outer region,

permeability n,, in Reference 7. The coefficients Api (1 =1,2) and Bpi
(i = 2,3), for the vector potentials for the present ferromagnetic sphere problem,
reduce to the coefficients of the potentials in the two regions of the simple current
band problem when the permeability of the sphere Hy approaches that of the surround-
ing medium by This shows that the solutions of the above ferromagnetic current
problem have the correct mathematical form.

We note that derivation of the solution for the problem of a ferromagnetic

sphere surrounded by a coil of finite width is found in Reference 7. See Figure 5

for the geometry of the problem. The magnetic induction for this case is:

By = - 2 (p+l) Aplr(p ) Pp (cos 8) (45a)
p=1
1 . -1 . 1
BrI = 3 z: Aplr(p )_§~ [51n ) Pp (cos Gﬂ (45b)
21 36
P
) - (p-1 ~-(p+2)] 1 )
BUII = 2:1 [-(p+1) Apzr p-1) + pozr (p ?] Pp {cos =) (45¢)
p:

% B

.1 G-v, B a0

B = T8 & [A rPT g —f—J 5 [51n 0P (cos w)] (45d)
p=1

p2 - (p+2)
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Figure 5 - Ferromagnetic Sphere Surrounded by a
Coil of Finite Width (yz plane)
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The mathematical solution for B

-3

sin 9

1

sin

1

>

p3

® ( ulJer ) 1
G- Gpe3y) Fp (05 9

p#2
p=1

o0 B
(p-1) p3 3 . 1 N
A + —=— | == 8 P ( )
g;l [ p3r r(p+2)] 6 [51n > cos © ]
o0 ! U, JrK
™™ 3 . 1
5 [—(—pm]ﬁ [Sln 8 Pp (cos 6)]
p=1

[pBPAr-(p+2{] P; (cos 6)

p3
Appendix E of Reference 7, is given by

-(p+2)] 5 . 1
[Bpar ] 0 [51n 8 Pp

r_(p+2)] P; (cos 9)

(cos Bﬂ

(45¢)

(451f)

(45g)

(45h)

in terms of known quantities, obtained in




e e -

IR

.
L T e £

B

p3

= i ’ (p-l)
l Kp(p+l)R2

3u IR K
T (p-2) (p+3)

+ 1] (p+1)R2(p'l)Kg - (p)RZ—(p+2)K;”////

{(-p)R2

" LI r, P EZJ(p)R;(P+2>} (46a)
g, ~(2p+l) 2
By [1+ <p+l> “1] (46b)
<1 - &3)
H1
) u K R3‘P+2
T T T D (46c)
r ~(p+D)
(2] - - 1 (46d)
([x] R2p+R£(p+ n
2
M IR, K -
. e ey TR oo
P pyp —-(p+l) e
([X]R2 +R, )
29

. - T ———



Ly JVER

-
‘-

The numerical values for the other coefficients can be obtained from the equa-

tions

A, =k (47a)
p3 P
17
B. =8 z] + K 47b
P2 p3 (2] P 475
A = [x] B (47¢)
_ -(2p+1)
Apl = Apz + szRl (474)
(pt+3)
u,JR K
B, =A 3R3(2p+1) +B o+ 3 p (47e)
P P P (p-2) (p+3)

SPHERICAL SHELL SURROUNDING AN INFINITESIMALLY THIN SPHERICAL CURRENT BAND

We now proceed to solve the boundary value problem of a ferromagnetic spherical
shell of outer radius R3, inner radius R2’ of homogeneous permeability Hos surround-~
ing an infinitesimally thin current band of radius Ry and having a current
density J. A constant density J is assumed. Figure 6 shows the four regions of
interest. Regions I, II, and IV have a permeability equal to the permeability of
vacuum which, for convenience, will be labeled Hy+ The problem's spherical
symmetry suggest that a spherical coordinate system, such as that shown in Figure 1,
be used in the solution.

The details of treating problems of this type with spherical symmetry are dis-

cussed in the previous section of this report and in Reference 7.
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The partial differential equation that governs this problem is the azimuthal

component of the vector Laplace's equation,

& ;\L = A\i’(r’e) = 0 1in regions I through IV (48)

When the vector Laplacian is expanded in spherical coordinates, Equation (48) can be

written as

2 2
9"A oA, 3°A, oA A
S rw o st 0 Cin reglons 1
or r- 96 r r” sin” § through IV)
(49)

The general solution of the equation has the form

(50)

(cos 6) is the associated Legendre function of

are constants and Pp

where A and B
p P
The magnetostatic components of the vector potential in regions 1

the first kind,
through IV are
(51a)

55 (Aplrp)P; (cos B)

A =
Yl -1

o

(51b)

B
= p +_.E2_ pl
2:1 (Apor r(p+1)> > (cos 9)
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A = i A P, B3 _ Pl (cos @) (51c)
WIII p3* o)/ p ©
p=1 r
: A 25 () o eos 9 (514)
{ vy T g\ T ) B Te08

4 where, for the AWI component, Bp1 = 0, because at r = 0 the potential must be finite,
iﬁ' and, for the AwIV component , Ap4 = 0, because as r approaches infinity the potential
& - must remain finite,

At each interface, the basic laws of magnetostatics reduce to boundary condi-

tions on B and H that can be used to evaluate the six constants in Equations (51).

i{, The first boundary condition states that the normal component of B across each

7; boundary must be equal to (EQQEI) : EiZ = 0. The vector quantity le is the unit
45, outward normal to the surface (in the spherical case Qr). Thus, the following

# boundary conditions must be satisfied by the four regions of the ferromagnetic

3

spherical shell problem.

B

- BrI = BrII at r = Rl (52a)
. = B =
BI'II JI‘III at r R2 (52b)
Brrrr = Brrv at r =Ry (52¢)

The second boundary condition states that the tangential component of H across each

boundary must satisfy the relationship

le X (ﬁz-il) = 38 (53)
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where 35 (which equals 3(6) in our case) is the true surface current density in the

limit of the vanishing width between the two regions. Using the linear relationship

B = \H, Equation (53) can be expressed in spherical coordinates as:

o2 _Per

= J(8) (54)
Ho o My

The general expressions for the components of the vector potentials in each

region Aw (Equations (51)) are then substituted into the boundary conditions (Equa-

tions (52) and (54)) and solved for the constants A , and Bp There are six

pi
algebraic equations with six unknowns, thus enabling the potential in each region

to be specifically determined. The six boundary value equations that must be solved

for the coefficients are given below (where the index p is odd only and understood

to take on values from 1 to ).

As in the previous section, the component of the current Jw(Q) must be expanded

into a set of associated Legendre functions in ovder to evaluate the constants A_.

and B i (The detailed expansion of the azimuthal component of the current density

is given in Reference 7).

A o _[. _p (p+1) ss
p1f1 [“p2“1 + Boofy ] (35a)
P -(p+1)] | P —(p+1)]
[AszZ + Bp2R2 ] [AP3R2 + Bp3R2 (55b)
p -(pt1) | _ -(p+l)
[AP3R3 + Bp3R3 = BPA R3 (55¢)
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J_(8)
1 (p-1) -(p+2) 1 p-1)_ _bP _
- ——[Apz(p+l)Rl - pole ] + ™ [Apl(p+l)Rl J = (55d)

u

1
1 (cos B
pp(cos 0)

_ L (p-1) _ -(pt2)] | 1 (p-1) -(p+2)] _
[Ap3(p+l)R pB _.R ] + ™ [Apz(p+l)R2 - posz p ] = (

1.12 2 p3 2
(55e)
1 -(pt2)], 1 (p-1) -(pF2)| _
- ™ I}pol.R3 ]+ 0, [Ap?)(p+l)R3 - poBRB =90 (55f)
> 1
[Note: J\p(e) =7J Z K P (cos 8) =ZJ (8) where X_ = 0 for p even.]
— PP p P p
p=1
The coefficient Ap3 in terms of known quantities is expressed as:
1 - —(p+2)]
— 2p+l)
™ [Jp( PR,
A, = 3
p3 i (-1 | L_ —(pv2) _ L G-1) , L -(pt2)
[ul(p+l)R2 + ul_[X](p+1)'R2 uz(p+1)Rz + 0 p[x]R2
(56a)
2,+1 H1 /p+l
R 1+ = (27
where [Xx] = (56b)
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_'<=’W

(p+2)
"R (56¢)

P (2p+l)P;(cos 8)

The numerical values for the other five coefficients can be obtained from the

following equations

By = J; (57a)
By = Ap3[x] (57b)
Ay = -J;R;(2p+l) F A+ BP3R;(2p+l) (57¢)
A, =hA +8 RGP (57d)

pl ~ “p2 p2'1

_ (2p+1)
B = ARy + B (57e)

The coefficients Api and Bpi can be determined from Equations (56) and (57). Equa-
tions (51) can now be used to specify the potentials AI’ AII’ AIII’ and AIV in

regions I through IV. The normal (Br) and tangential (BO) component of the magnetic

induction in regions I through IV can be determined, by using Equations (36) and

(40) as:




__5 (p-1) 1
BBI = 2: (p+1)Aplr Pp (cos 9)

))-g.e. [sin 0 le) (cos 6)]

A T

1
]Pp (cos §)

A (P g -(p¥2 [sin 6 P:; (cos e)]

(p-1)
Ekp3(p+l)r - pB Pp (cos 8)

[Ap3r(p-l) + Bp3r-(p+2)} g—e [sin 8 P; (cos 8)]

(58a)

(58b)

(58¢)

(584)

(58e)

(581)




T e T

e

h - s -

BrIV

= Z ?rl{_e [Bpar—(p+2)] —g—— [sin 0 P; (cos 6)] (58h)
p=l

The coefficients Api (i =1,2,3) and Bpi (i = 2,3,4), for the vector potential of
the present ferromagnetic shell problem, reduce to the coefficients of the potentials
in the two regions of a simple current band when the permeability of the shell Hy
approaches that of the surrounding medium ul (see Appendix C).

Lebedev et al., present the magnetic vector potential due to a dc current 1
flowing in a filamentary circular loop of radius r, inside a hollow spherical shell
made from material of magnetic permeability u (in Reference 3 see "The Fourier

Method," page 99). The components of the magnetic vector potential were given as:

o0 2 1
) _ 21y _Lapt3) " p7(0)
Aw Aw(r,e) . 2% (2p+1) (2p+2) P(2p+l)
p=

(2p+2)

Lo Pl(cos 0)
T (2p+1) <R1> (4p+3)

[Cp+Du+(2p+2)] [(2p+2)iF(Zp+D)] ~ \R, (2p+1) (2p+2) (u-1)°

where r » R,; see Figure 7,

7
&

c = 2,998 x lO8 m/sec.

Note: Lebedev's equations are expressed in Gaussian units.
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Although we did not derive this solution, a solution for this type of problen
could be obtained by allowing the infinitesimally thin current band in the prececdine
problem to degenerate to a filamentary current loop as was done in Appendix B of

Reference 7.

SPHERICAL SHELL SURROUNDED BY AN INFINITESIMALLY THIN SPHERICAL CURRENT BAND

The boundary value problem of a ferromagnetic spherical shell of outer radius
Rz, inner radius Rl’ and a homogeneous permeability Hos surrounded by an infinite«i~
mally thin current band of radius R3 having a current density J was solved in
Reference 7. A constant current density was assumed. Figure 8 identifies the tuin
regions of interest. Regions I, III, and IV have a permeability equal to the
permeability of vacuum, Hg» which for convenience will be labeled My The problemn's
spherical symmetry suggested that a spherical coordinate system such as that shown
in Figure 1 be used in the problem solution.

The form of .he potential in each of the regions (I through IV) was determincd
from the solution of the vector Laplace's equation in each region. These magneto-

static vector potentials in regions I through IV are:
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- - P\ pl
AL mAy = (Ap17 ) P, (cos 9 (59a)
\pél
. P B 2 1
= = L §] 59b
AII AwII 2: Apzr + (prD) Pp (cos 0) ( )
p=1 r
éi p Bp3 1
= = —T 5
AlII AwIII o Ap3r + (ot D) Pp (cos %) (59¢)
p=1 r
A = A = ;: _jﬁﬁL__ P1 (cos 8) (594d)
IV YIv o ;1 r(p+1) P

where for the A, component B = 0, because at r = 0 the potential must be finite,

I 1
and for the Awli component Apz = 0, because as r approaches infinity the potential
must remain finite.

At each interface, the basic laws of magnetostatics in Equations (3a) and (2%
reduce to boundary conditions on B and H that can be used to evaluate the six con-
stants in Equations (59). From Equation (18a), the normal component of B across cach
noundary must be continuous, i.e., (EZQ§1) . HiZ = (0 where the gquantity El2 is the
unit outward normal to the surface. This provides the following boundary conditicns

which must be satisfied by the solution in Equations (59) for each region.

BrI = BrII at r = R1 (6Va)
Brrr = Brrpr etr =R (6uM)
B =B at r = R (60¢)

rIit riv 3




: The normal component of the magnetic field Br is expressed in terms of the

vector potential as

- Br = (VxA)r (6la)
A

~;‘.

- 13

" = T3~ 8 3p 61
a By = T sin § 30 (sin 0 A (61b)
;:: -~ ~ ~ R

;- e egr ewr sin 6

% - 1 3 d )

¥ where B =V x A = —(/—m—— —_— — —

% r2 sin 6 or 96 oY

4

= 0 0 Ar sin 8

E 1]

k >

>

1

5 1

2+ However, because the vector potentials in each region are functions of Pp (cos §) we

can simplify Equations (60) to constraints on Aw

AI = AII at r = Rl (62a)
AII = AIII at r = R2 (62b)
AIII = AIV at r = R3 (62c)

The second set of boundary conditions is obtained from Equation (18b). The

tangent ial component of H across each boundary must satisfy the r lationship

n

1o x (=) = T (63)
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s where J (which equals 316)) is the real surface current density in the limit of
vanishing width between the two regions. Using the relationship B = uH, Equation

(63) may be expressed as

. B B

- 82 81 J(0) (64)

g Ha H1

X

A Referring to the curl in Equation (61), we can write By as

2= = 1 9

‘ - I - 65)

.. Be (VxA)e - [r Aw] (

e - 1 13 1 13 _ _

g - a_.;.g;»(rAII) T T o (rA;) = 0 atr =R, (66a)

i} 2 1

1

1 15 113 = =

,é - u e (rAIII) + “2 1 (rAII) 0 atr RZ (66b)

1 13 1 13 - - o
- u_l?a_r_ (rAIV) + m il (rAIH) = J(B) atr = Ry (66¢)

The general expressions for the potentials in each region (Equations (59)) are
then substituted into the boundary conditions (Equations (62) and (66)) and solved
for the constants Api and Bpi' There are six algebraic equations with six unknowns
and the potential in each region.can then be specifically determined. The six
boundary value equations that must be solved for the coefficients are given next
(where the index p is odd only and understood to take on values from 1 to @), It is
noted that the current JW(G) must be expanded into a set of associated Legendre
functions in order to evaluate the constants Api and Bpi' The detailed expansion is
derived in the section of Reference 7 entitled "Expansion of the Current (JW(U)) in

Associated Legendre polynomials.”




s TRoan

RN
A :

Ny,

bt )

RV s

AR P = [APZR P+p R ‘(p+1q

pl1l

, p -(p+l) ] _ P
[Ap2R2 +Bp2R2 ] [AP3R2 4B .R

1 "p271

p3 2‘(P+1)]

[A R,P+B R '(p+15] - B, [R3‘(p+l)]

p3’ 3 "p3 3

Hy

(p-1) _ pB RZ-(p+2

Lt
- =—I{A_(p+1)R
ul[_p3(p )Ry p3

1 -(p+2) |, 1 p-1
- ™ [— po!‘R3 ]+ 0 [Ap,}(pﬂ)R3

1 (p-1) -(p+2) 1 (P-l)] -
- [ApZ(p+1)Rl - pole ] + y [Apl(p+l)R1 0

1

), 1 (p-1) ~(p+2) |-
J+ -U—Z—[Apz(p+l)R2 - B )R, (p )]- 0

-(p+2)|_ 1
- PBP3R3 }— Jp(e) Pp(cos 9)

(b7a)

(67b)

(672)

(674)

(67e)

(671)

The solution of these equations to obtain Bp3 in terms of known quantities is per-

formed in Appendix A of Reference 7.

In summary:
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1 (p-1) _ o -(p#2)\, 1 s (p-1)

B 5% @ (e, pr,” P*2)) =9y @@ -

p3 /1 —(p+2)\ . 1 (p-1) 1 -(p+2)\ ] a
[(‘—ul PR, >+ —“2 ([ZJ[X](PH)RZ P ) - “—2_ ([Z]PRZ )]

[x] = . (58b)
)
Mo
: ] Rz—(p+l)
Zl= (68
([X]R2 p+R2"(p+l)) )
re J; (G)RZP
J B) =
* T (B, ) -
2 T
7! v, J (8)
p (8) = L p (68¢)

P;(cos 0)R3(p—l) (2p+1)
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The numerical values for the other five coefficients can be obtained from the

following equations:

’

B2 = B3 [z] + 3, ® (69a)
A.=J (8 b
03 = 3 (®) (69b)
A = [x] B2 (69¢)

_ ~(2p+1)
Ay = Ay B )Ry (69d)

_ (2p+l)
By = A3k +B (69e)

Because the coefficients Api and Bpi can be determined from Equations (68) and

A

(69), Equations (59) can now be used to completely specify the potentials AI’ 11

AIII’ and AIv in regions I through IV. The normal (Br) and tangential (BS)
components of the magnetic induction in regions I through IV can be determined by

using Equations (61) and (65) as:

oo

B (p-1) 1

Byp = - jil (p+l) (Aplr ) Pp (cos 9) (70a)
_ 1 = (p-l)] d 1

Bt " Sin 0 p=1 [Aplr a0 (Sin ® PP (cos 8)) (70%)
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o ! oo

| - (p-1) _ -(p+2)] 1 7 0e)
3 BGII = - E: [Apz(p+l)r pozr Pp (cos A) (70c)
‘ p=1
; .y 1 (p-1) -(p+2) L( IS | ) %
.T BrlI = g;l SIn B [Apzr + szr 5 sin 6 Pp (cos 9) (70d) j

“; _ 3 (p-1) -(p+2)] 1 !
T Borrr = EEQ [Ap3(p+1)r - po3r Pp (cos 6) (70e) ;
Y s 1 (p-1) -(p+2)] 2 - 1

'; BrIII = 521 Sin 0 [Ap3r + Bp3r ] 35 <§1n 5] Pp (cos 6?) (70f)

9 < —(p42

f Bopy = 2: (pB 4T (e )) P1 (cos 0) (70g)

| o1 P p

¥

B <~ 1 -(p+2)| 3 _ . 1
Boyy = ~ SIn o [Bpar ] 5 sin Pp (cos 6) (70h)

In Appendix C of Reference 7, the coefficients Api (i =1,2,3) and Bpi
(i = 2,3,4) for the vector potentials for this ferromagnetic shell problem were
shown to reduce to the potentials in the two regions of the simple current band
problem when the permeability of the ferromagnetic shell Hy approaches that of the
surround ing med ium Hy - This showed that the solutions of that ferromagnetic current

problem had the correct mathematical form.
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SPHERICAL SHELL WITH INTERNAL AND EXTERNAL INFINITESIMALLY
THIN SPHERICAL CURRENT BANDS

We now proceed to solve the boundary value problem of a ferromagnetic spherical
shell of outer radius R3, inner radius RZ’ having a homogeneous permeability Hos
surrounded by an infinitesimally thin current band of radius R4 having a current

density jé and surrounding an infinitesimally thin current band of radius R, having

1
a current density 31. A constant current density is assumed for both bands. Figure
9 identifies the five regions of interest. Regions I, II, IV, and V have a
permeability equal to the permeability of vacuum, My which for convenience will be
labeled My- The problem's spherical symmetry suggests that a spherical coordinate
system such as that shown in Figure 1 be used in the problem solution. The govern-

ing differential equation for A when homogeneous and linear materials are considered

is, from Equation (17),

(71)

w|
1]

b0 -uJ

From Equation (22), we see that the elemental vector potential dA due to a

current element Jdv is in the same direction as J. It is well known from this that

the lines of the magnetic vector potential A are circles centered about the coil or
loop axis. The magnitude of A along such a circle is constant, which means that A

is a function of the spherical coordinates r and § only. Therefore, we know in

advance for this problem that AW is the only component of A existing at the field
point. The infinitesimally thin bands of current shown in Figure 9 have only an
azimuthal or § component, which is a function of r and 6, and lie on the boundaries
between regions 1 and II (i.e., r = Rl) and between regions IV and V (i.e., r = Ré)'

These currents can be expressed as:

0 , 1f8<8 or8>6,
1 (72)

ety ®, if  8,<8 <8

ol
il
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! ¢
0 , if 6 < 61 or § > 62

g, o= (73)

-~ ' 1 [
83,8 , 18 <0<,

" W -

i

:

Therefore, Equation (71) has only an azimuthal component and can be expressed as:

ik 1o
.

_<~f‘:z-aﬁ:mﬂ‘,‘u.m'w"‘;
2 D w e
N ) ' s

ﬁAw = $Aw (r,8) = 0 (in regions I through V) (74)

When the vector Laplacian ¥¥ is expanded in spherical coordinates, Equation (74)

can be written as

2

&

; 2 2

3 3 3"A OA

Y o2 M1 TN core W Ay - o ons 1 (75
X —5 Tt + > 55 " 2 3 = in regions )
’ or r- 96 r r” sin® 6 through IV

&

To solve Equation (75), we follow the procedure given on page 17. The general solu-

tion of Equation (73) in regions I through IV may be formed from the product of the

solutions in Equation (31) which yields

M

= (
A R(r)0 (8) Rp(r)Op(e)

el
H
—

(76)

= 'rpP ., __P 1. 1 )
Z Apr + r(p+1) (CPPP (cos 8) + Dpr (cos d)

o
[}
—
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ELIR A

In the spherical case, associated Legendre functions of the second kind are

infinite at cos § = 1, and thus cannot be included when the region under considera-
tion includes the symmetry axis. Therefore, the constant Dp must be set equal to

zero, and Equation (76) reduces to
B 1
AP + ———ll—~) P (cos ) (77)
1

where A = A’C =g .
p = Apbp» and By = BCy
The form of the potential in each of the regions (I through V) is determined

from Equation (77). These magnetostatic vector potentials in regions I through V

are:

- _ Pl 1 .
A A > [Aplr } P (cos ©) (78a)
p=1
A = A = Z A rP + __BEE__ pl (cos 6) (76
Il Y11 p2 (p+1) P ‘
p=1 r
- 3
- - p 1 . “
Ar = Ay 3 [APBr TSy J P (cos ) (7ee)
p:l r
- B 1
A = = 1% r R
o= A g;l [Ap4r + ;?EITT] P (cos ©) (784)

Bs 1
) —P2__ Pp (cos 0) (78¢)




where, for the Awl component , Bpl = 0, because at r = 0 the potential must be finite

and, for the va component, A . = 0, because as r approaches infinity the potential

pS
must remain finite.
At each interface, the basic laws of magnetostatics in Equation (2a) reduce to
boundary conditions on B and H that can be used to evaluate the eight constants in
; Equations (78). From Equation (18a), the normal component of B across each boundary
5 - ii) . ;12 = 0 where the quantity Hiz is the unit out-

; . must be continuous, i.e., (B
i ward normal to the surface. This provides the following boundary conditions which

must be satisfied by the solution in Equations (78) for each region.

BrI = BrII at r = R1
Brrr = Beppp 3t r =K
79
Brrrxr = Brrv 3t T =Ry
Boay =By 3t T=EK,

The normal component of the magnetic field Br is expressed in terms of the

vector potential as

B = (VxA)r
(80)
_ 1 9 (sin 8 A))
Br r sin 6 36 Aw
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e, egr %f sin 6
- =5 = 1 3 9 )
where B =V x A = . s 55 5$ f
r- sin 8 !
0 0 Awr sin &

) , 1 .
However, because the vector potentials in each region are functions of P_ (cos ¢
P

we can simplify Equation (79) to constraints on A¢

AI = AII at r = R1 (81la)
App = A at T =R, (81b)
Arr T My oacr = R, (81c)
AIV = AV at r = R4 (51d)

The second set of boundary conditions is obtained from Equation (18b). The

tangent ial component of H across each boundary must satisfy the relationship
2

Ny x (Hy=Hp) = J (82)

where js (which equals J(%)) is the real surface current density in the limit of ¥
vanishing width between the two regions. Using the relationship B = iuli, Equation

(82) may be expressed as ;
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B

02
—_— - —_— = 83
0 ™ J(8) (83)

Referring to the curl in Equation (80), we can write B6 as
- (kB = - L 9
Be = (VxA)e == T 3 [rAw] (84)

From Equations (82) through (84) the tangential components in regions I
through V must satisfy the relationships:

- i_l%g_r (xA;) + %I%if (rA) = J;(8) atr =R (85a)
. 1}5 13 (g + ﬁ 22 (rAp) =o0atr=R, (85b)
- 3_1%%; (rApy) + i—zé% (rA;;;) = 0at r = Ry (85¢)
- %I‘% %; (rAv) + %I % %; (rAIV) = J2(6) at r = R, (854)

The general expressions for the potentials in each region (Equations (78)) are
then substituted into the boundary conditions (Equations (8l) and (85)) and solved
for the constants Api and Bpi‘ There are eight algebraic equations with eight
unknowns, and the potential in each region can then be specifically determined. The
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eight boundary value equations that must be solved for the coefficients are given
next (where the index p is odd only and understood to take on values from 1 to ).

»

r

L

v It is noted that the current Jw(e) must be expanded into a set of associated
]

Legendre functions in order to evaluate the constants Api and Bpi‘ The detailed
¥ expansion is derived in the section of Reference 7 entitled "Expansion of the

Current (Jw(e)) in Associated Legendre Polynominals,"

A RP - [A R + B Rl(p+l)] (86a)
P -(p+1)] _ P -(pt+l)
[Aszz + szRz :, = [A 3R + B »3R2 ] (86b)
p -(p+t1)] _ [, .p -(p+1)
; [ p3R3 * BP3R3 ] = LAp4R3 + Bp4R3 (86c)
».
!
2
‘ P ~(p+l) -(p+1) 86d
' [Ap4R4 + B4R, J = [BPSR(’ (86d)
I ) _I_[A (o+1)RPD oy RT “’*2)] a1 D] 2 2t (86e)
H1 p2 1 p21 ul pll P;(cos 8)

(p-1) ~-(p+2) 1T (p-1) -
[Ap3(p+l)R2 -PB 4R, J+ 1[Ap2(p+l)R2 -p8_.R

(p+2)7 _
" p2R2 ] =0 (86f)

Ho

1 -1) - (p+2 (p-1 -
N [Apé(p+1)R3p ~PB_,R3 (p+ )] E—[Ap3(p+l)R3p )-po3R3 (P+2)] =0 (86g)
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1 [ -(p42) 1 (p-1) ] . _e2®
i + -[pR— B :‘ + —[A (p+l)R4 /' -pB L.Ra ] = ———
1 W be p3] Wy L4 P P (cos 6)
1 P (86h)
" The solution of these equations is performed in Appendix D. In summary:
SN
o
()
, u,J
3 Aplo = (p—i)le = [x] (87a)
L (2p+l)R4 Pp (cos 8 )
k-
i u,J1(6)
. - B, - = 12p - = 1] (87b)
3 P (2p+1)R pt )P (cos 9)
¢ oo
>
& Hy
,‘f A Q,Ejil) R(2p+l) +{ — -11B
: p3\ p 2 My p2
!“ = (87C)
] p2 U
% 142 ((E+1)) g(2p+1)
Mo\ P 2
Ay = Bp3[w] + [x]1(5]= (2] (87d)
RPrx](s) - RECKIISIIT) - (YICATRD - (v3ry P
By = (87e)

P ~(p+1) p
R, [w)lT) - R, - Ry W)
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where

_ (2p+1) _ (2p+1)
By = Ap3R3 T By - ARy
B . =-A iﬂi}l) R(ZPHD L 4 1272 )
p5 ph P 4 ph 1 -(p+2)
P_(cos 0)P R
p 4
A=A +B g 2Pt

pl p2 p21

‘((22+1)> R(2p+1)

[r] = £ 2
[ [1 L ((p+1))} L (2p+1) ]
My p -2
1.
()
(Al = L

{ [1 e (Letﬁ)] L (2p+1) }
By P 2

(87f)

(87g)

(87h)

(871)

(873)

(87k)

(87¢)




Because the coefficients A |, and B can be determined from Equations (86) and

pi pl

(87), Equations (78) can now be used to completely specify the potentials AI’ Args

A and A,, in regions I through IV. Then the normal (Br) and tangential (Be)

Irr IV

components of the magnetic induction in regions I through IV can be determined by

using Equations (80) and (84}, to be:

o0

Bop = - z%. Ep+l)Ap1F(P_lﬂP;(cos 9)
p.

1]

L (p-1)\ 3_ 1
BrI sin © 2:1 (Aplr ) =5 [sin 0 Pp (cos eﬂ
p=

oo

_ . (p-1) -(p+2)] 1
BGII = p_i [—(p+l)AP2r + pozr Pp(cos 8)

> B
1 (p-1) p2 |3 [.. 1
T ["p:f ' r<p+z>] B (5 9 Bpleos ©)

= ) RN e B -(p+2) 1 )
BquI E&] [ tpeton £ p p3r Pp(cos )]
1 \0- [ D K } 1
3 . o JURNERS I A s A
Betir 7 in ~ Yo ETYS N T [““ P (cos )]

5

(88a)

(88b)

(88c)

(88d)

(88e)

(88f1)
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5 (p-1) -(p+2)] .1
Byry = 2:. [-(p+l)Ap4r + Bt Pp(cos 8) (88g)
p=l
Y ‘Z‘, RGNS I TN JURAS FOON (88h)
rlV ~ sin 6 p4” (p+2) |98 [sm po°®
p=l *
Byy = 2 [poSr‘(p+2)] Pll)(cos 0) (881)
p=1
1§ ~(p¥2)] 3 [ 1 .

By = == ggi [BpSr ] 5 [51n 8 Pp(cos 6)] (88j)

In Appendix D, the coefficients Api (i=1,2,3,4) and Bpi (i =2,3,4,5) for
the vector potentials for the present ferromagnetic shell problem reduce to the
potentials in the two regions of the simple current band problem when the permeabil-
ity of the ferromagnetic shell Hy approaches that of the surrounding medium Uy '
This shows that the solutions of the above ferromagnetic current problem have the

correct mathematical form.
SOLUTIONS FOR PROLATE SPHEROIDAL BODIES

SOLID PROLATE SPHEROLD OR PROLATE SPHEROIDAL SHELL IN A UNIFORM
FIELD OF ARBITRARY DIRECTION

Important problems relating to determining the magnetic induction for
spheroidal ferromagnetic bodies in an external magnetic field have not been widely
reported on in the literature or in text books. The solutions for these types of
boundary value problems can be obtained by using a procedure similar to that used

for spherical bodies3’4’S by determining the solution to Laplace's equation for the
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magnetic scalar potentjal. Constant external field problems, solid and shell, were
solved and programmed on the digital computer by Nixon of the Center, for the case
of an arbitrarily oriented external magnetic field.6 The solutions found in
Reference 6 were presented in Cartesian coordinates. The problem of, for instance,
finding the magnetic induction for an infinitesimally thin current band surrounding
a spheroidal shell8 can be generalized to include an external magnetic field.
Linear superposition may be applied to find the solution in this case. Therefore,
in Appendix E the Cartesian expressions6 were converted to prolate spheroidal
coordinates to be compatible with other problem solutions in this section of the

report.

SOLID PROLATE SPHEROID SURROUNDED BY AN INFINITESIMALLY
THIN SPHEROIDAL CURRENT BAND

For the case of the prolate spheroidal bodiesg’9 the equations given in the
Basic Equations section of this text apply. The governing differential equation

for A when homogenous and linear materials are considered is from Equation (17).

&A= (89)

where the general expression in prolate spheroidal coordinates for a current density

is
(90)

As previously discussed (see page 16), because the current has only an azimuthal or
 component, A has only an AW component, For the spheroidal problems considered in
this report, the current band is assumed to be infinitesimally thin and the

governing differential equation for A in each region can be expressed as
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3(sinh n A,) 1 o(sin 6 A )

3n|sinh n an t 36 | sin © 96

Using the method of separation of variables, the solution to Equation (91) is

A = 2: [A P;(cosh n) +B Q;(cosh n)]
(92)

x [A’ Pi(cos 9) + B' Q;(cos eﬂ

where PZ and Qz are the associated Legendre functions of the first and second kind,
respectively,

For the prolate spheroidal system, the associated Legendre functions of the
second kind are infinite at cos 8§ = *1, and as such cannot be included in a general
solution for a given region which includes 6 = 0, or 6 = 7. Therefore, in our case,

the constant B is set equal to zero, Equation (92) reduces to

A, = E:l [kle(cosh n + szp(cosh n)] L (cos 8) (93)
p:

where kl and k2 are constants (k1 = AA,, k2 = BA"). When the substitutions £ =

cosh n and v = cos 6 are made in Equation (93), Aw can be expressed as

1 1 1
= k
A (4 ® + g© ] 7y (90

61

S SN




G

PRI 5

This is the general form of the psi (y) component of the vector potential that will
be used to determine the potentials AW in each region,

The problem of a solid ferromagnetic prolate spheroid surrounded by an
infinitesimally thin prolate spheroidal current band shown in Figure 10 was solved

by Purczynski.10

In this case, the permeability of the solid spheroid is Hy and the boundary of
the body is determined by n = n, = constant. The permeability o of a vacuum that
is external to the spheroid is denoted by My The current band which lies in the
boundary between regions II and III is denoted by n = n, = constant, and the con-
stant current density flowing in the band is J.

For completeness, Purczynski's workt0 is presented in this text in our nota-

tion. The form of the components of the vector potential A, in regions I through

v

IIT is determined from Equation (94). These magnetostatic vector potentials in

regions I, II, and III are:

oo

1 1
= P 5
Ay §=:1 [Ap p(&)] P, () (95a)
I 1 1
— p{:l [Bppp(g) + Dpr(g)] P(V) (95b)
o 1 1
N S LXRGY RO (95¢)
p=1

where £ = cosh n and v = cos 6,

We note two constants were set equal to zero because the potential must be

finite in each of the regions I through III and approach zero as £ » « in region III.

The remaining constants are determined from the boundary conditions

BnI = BnII at n = ny (96a)
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Figure 10 - Ferromagnetic Prolate Spheroidal Solid Surrounded by an
Infinitesimally Thin Current Band




B

- 6b
ni1 - Snrrzz 2° (96b)

n=mnmn

2
B B
6III 011
AL L A | t = (96c)
Wy W y(8) at n = ny
B B
11 _ 8T _ 5 a4t n=n (96d)
Hy ko 1

We note that Equations (96) can be written ac

Apyr = Ay1r atn = ny (97a)
A= Aprr BN Ty (97b)
1 1 3 [(r2.4)=
i (ﬁI) ( 2 2)% 9 [(g 1) Awlll]
) 52'\) £=E
=52
P o G P. )
+<%‘> - %g_a[(‘r’z'l) Awn} - X Ip(8) = Ll —E—
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The general expressions for the potentials in each region (Equations (95)) are then

substituted into the boundary conditions (Equations (97)) and are solved for the

four constants. Because there are four equations with four unknowns, the potential

in each region can be determined. The four boundary value equations are presented

below. The index p in the summation sign has both even and odd values and takes on

values from 1 to ©, It is noted at this point that the current density Jw(e) must

be expanded into a set of associated Legendre functions to evaluate the vector

potential.

The detailed expansion is presented in Reference 8.

1 1 1 1 1

AL (E)P2(V) = [Bppp(gl) + Dpr(gl)]Pp(v) (98a)
1 1 1

(522 E5) + 0,0 (5) e = B, G, (98b)

5
- (i—l> —L [(&2-1) [EPQ;(E)] P;(w]

@) g

£

'
1 13 |(.2 1 1 1
+<“1) . 2)% > [(g 1) [Bppp(g) ¥ npqp(g)] Pp(\))] 3,8)
alE, -v
? £=t,
(98c)
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E | 1Y ) £t
. 1
S 1
v {1 1 9 (2 ) a o1 1 }
u - (U2> ——— % [(& ) fapie] v (984)
i3 a@f”) et
. ' = l
If we make the following substitutions
1
A 3 (2 ) L ]
P - {(& ST RG) (99a)
— %
— Doy 3 | (72 1
Q@ - 5 [(r, 1) QP(E)] (99b)

and perform simple algebraic manipulation, the four boundary conditions can be

simplified to:

1 1 1
ApPp(El) = Bppp(gl) + qup(&l) (100a)

Bth(Ez) + DPQ;(EZ\ =—EPQ;(52) (100b)
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1
2

XC af 2-\)2)
() [tea) () B -t

Pp Q)]

(ﬁi) [Bppﬁ (El) * P Qp(g )] [iz][Appﬁ(gl)] (100d)

The solution of these four simultaneous equations to obtain constants in terms of
known quantities gives

1
2

vy (1,3,@a(E3-%) N al(e,)\ o (al) ()
o L\ %)% _P;@» " (&) )

(101a)
1 Ay 1
P (&(czwzp(az)) < )
1 A
P ) o))\t Pp(a) ¥ (%)
133, @a(5-) <Q;(ez>>
A 1 1

B f p(E2)Bp P (55) (101b)
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2 2\ i1
<1 i u_2> ulJR(e)a(EZ-v L QP(EZ)

; Hy Pi(&z) P;(v) P;(’éz)
3 E, = & A 1
; P S G() ||ve Q%(gl) ) Q;la(gl)
g 1 A
‘ Pp(g2) Pp(gZ) "1 Pp(gl) Pp(gl)
4
3.,‘ ulJp(6)a(€2—v )
{

Pg (‘52) P}l)(\))
%E) %)

A
Plll(EZ) Pp(g2) (101c)

+

o
et am i

e b

N

u
()
D = 1

p =, 1 A (1014d)
Q)(il) ) EZ.Q (51)
1 U, 4
Pp(El) 1 Pp(&l)

We note that when uz is allowed, in the limit, to approach Ul’ this solution reduces
to that of a current band in vacuum. We also note that the solutions are not in the

identical form of those given in Reference 10.
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The magnetic induction B can be determined from

which gives:

S S 2—[(1-’21/2.A e el )]
nI = (gz_vz)l/z 5y [\ ) (pPp l.)Pp v
- 1 9 2 s 1 1
By == & o {(‘5 1) (ap (E))P (v)}
p=1 a(&z-vz) ( PP ) p

M s

a [(1-\)2)/2 (BpP;(E;) + DPQ;(F,)> P;

(vt

B

nlI p=1 . 52—\)2)1/2 av J

B, --y —L 2 [(52-1)/2 B pre) + b ol(e) le}
o1 a(gz-vz)ﬁ 9f (p p PP ) p

Boe- Y L 5’—[(1-\)2)Li E o(£)) P )J

niit p=1 a(gz—vz)é oV ( PP ) p vV

(102a)

(102b)

(102¢)

(102d)

(102e)




; o .
; ) 1 3 1207 (o b 1

Bg11r = - 2 , % OE (E -1) (EPQP(E)) Pp(v) (102f)
X p=1 a(E Y

PROLATE SPHEROIDAL SHELL SURROUNDED BY AN INFINITESIMALLY THIN
SPHEROIDAL CURRENT BAND

We now proceed to solve the boundary value problem of a ferromagnetic prolate

spheroidal shell of homogeneous permeability Hy surrounded by an infinitesimally
thin prolate spheroidal current band of constant current density J. The geometry
of the problem suggests that a prolate spheroidal coordinate system, as shown in
Figure 2, should be used in the solution. Figure 11, a cross section of the

problem geometry, identifies the four regions of interest. The boundaries of the

prolate spheroidal shell are determined by n = Ny < constant and N = N, = constant.
The constant current lies in the boundary n = n3 = constant. Regions I, III, and
IV have a permeability labelled Hye Ampere's law states that

VxH=1J (103)

and, because 7 * B = 0, the induction B must be the curl of some vector field A.
The governing differential equation for A, when homogeneous and linear materials

are considered, is, from Equation (17),

;A= -] (104)

The general expression in prolate spheroidal coordinates for a current density

is

J=Je +1] e, + Jwew (105)

70




NN SR st s

BER U e Y

1 L2

CURRENT BAND
i) >
, "7'73 NOTE
=2 -
/ ¢ = cosh y
551 / Hq
/ I = Ccos
/
/
/

Figure 11 - Ferromagnetic Spheroidal Shell Surrounded by an

Infinitesimally Thin Current Band
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In the problem presented herein, the current density has only a psi (¥) component
;, [Jw(e) E@}’ which means that the vector potential has only a psi component Awam.
3 L —
b The vector potential A = Aw€¢ is a function of the prolate spheroidal coordinates

n, and 6, i,e.,[Aw=Aw(n,6)]. The constant current density, which lies on the

23 boundary between regions III and IV, can be expressed by the function

L

2, :
. :
* 0 , if 8 < B or 6 > 8,
3. 3 = (106)

s

Jw(e)ew , if 61 < 68< 62

-

i where Jw(e) is equal to a constant J along n = Ny for 61 <8< 62.

- Therefore, Equation (104) has only an azimuthal component and can be expressed

4 as

i3
i

2 =~ _ < - in regions I)

! @R, - wE0,0 =0 ([ reeine (107)

When the psi component of the vector Laplacian $Kw is expanded in prolate

spheroidal coordinates, Equation (107) can be expressed as (see Appendix A)

=0 (108)

9_[ 1 B(SinhnAHJ)J+§_[ 1 a(sineAw_)]
n

sinh n an 3 | sin 6 98

(in regions I through IV)

Applying the method of separation of variables, let us assume that A, can be

v

expressed as the product of two functions
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Ay = H(cosh n) “(cos 9) (109)

where H(cosh n) is a function of cosh n only and G(cos 8) is a function of cos 6
only. Substituting this form of the component of the vector potential-z into Equa-

tion (108), we have, after separation of variables,

2
EI——ZH- + coth n —g—}i - [ p(p+l) + ———l—z—— H=20 (110a)
dn n sinh® n
d2G dG 1
— +cot 8 =2 + [p(p+l) - ———)G =0 (110b)
2 do , 2
do sin” 0O

where the separation constant is p(p+l) and p is an integer from one to infinity,

It is well known that differential equations of the form

2.7 ' 2
au + coth n - p(p+l) + O — 8 o= o0 (111a)
2 dn . .2
dn sinh™ n
have the general solution of the form
i =c¢ Pm(cosh n)y +C Qm(cosh n (111b)
I'p 27p

where C1 and 02 are constants., It is known that a differontial equation of the

form
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) fres

riboge.

ataan e
G . 2

' 2
48 4 cots 8 4+ |ppp+) - —2—|6" =0 (112a)
2 a8 2

a6 sin” 6

has the general solution of the form

’

m m
G = C3Pp(cos 68) + CAQp(cos 6) (112b)

where C3 and C, are constants, The associated Legendre functions P" and Qg are of
the first and second kind, respectively. Comparison of Equations (110), (111l), and
(112) shows that in Equations (111) and (112), m2=1.

This requires that m always
equals unity.

The solutions of Equations (110a) and (110b) are expressed as

H(cosh 1) = A P;(cosh n +B Q;(cosh n) (113a)

G(cos 8) = A Prl)(cos 0) + B’ Q;(cos 0) (113b)

The general solution of Equation (108) may be formed from the product of solutions
to Equations (113a) and (113b) which yield

AW = H(cosh n) G(cos 8) = 2: Hp(cosh n) Gp(COS 0)

p=1

(114)
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r A
> LA Pl(cosh n) +B Ql(cosh n)]
p=1 p p

(115)

x [A( P;(cos ) + B’ Q;(cos 6)]

For the prolate spheroidal system, the associated Legendre functions of the second
kind are infinite at cos 8 = *1 and, as such, cannot be included in a general solu-
tion for a given region which includes 6 = 0 or 6 = 7. Therefore, in our case, the

constant B is set equal to zero. Equation (115) reduces to

™M s

A =

g " [KlP;(cosh n) + KZQ;(cosh n)] P;(cos 0) (116)

p=1

where K1 and K2 are constants (K1=AA’, K2=AB'). When the substitutions £ = cosh

and Vv = cos 0 are made in Equation (116), AW can be expressed as

~ 1 1 1
ye L [Klpp(a + KZQP(E)] PL(Y) (117)

This is the general form of the psi component of the vector potential that will be
used to determine the potentials, Aw, in each region.
The form of the component of the vector potential Aw in regions I through IV is

determined from Equation (117). These magnetostatic vector potentials in regions

I through IV are:




A=

"x..'.'

:él [Apfi(g)] Pl ()

A1

b 1 1 1
B P + C P
o - ,,Z=1 (2,8 + c @] 2w

(118)

s L 1 1
Ayrir E;l [Dppp(g) ¥ EPQP(E)] FptV)

) — 1 1
ANv T 251 [Fpr(g)] Pp(“)

Because the potential must be finite in each of the regions I, 1I, and III and

approach zero as £ + ® in region IV, the following constants were set equal to zero.

1. For Aypo the constant associated with Q;(i) P;(v) was set equal to zero
b duse
1
QP(E) > o at £ = +}
). For Ale the constant associated with P;(ﬁ) P;(v) was set equal to zero

1,.
because ¢ (7)) +» w as £ + o,
P

(We note Qi(g) + 0 as £ » w)

The constants A Bp, Cp, Dp, Ep, and Fp are to be determined from the boundary con-

ditions, At each interface, the basic laws of magnetostatics (Equations (3a))

reduce to boundary conditions on B and H that can be used to evaluate these six

76




constants. The normal component of B across each boundary must be continuous, i.e.,
(§é¥§i) . Hiz = U where the quantity EiZ is the unit outward normal to the surface.
This provides the following boundary conditions which must be satisfied by the solu-

tions given in Equation (118) for each region.

= = 119
13nI BnH at n =ny (119a)
= 11
Brar = Bppp 26N (119%)
n
= B =
BnIII nIv at n n3 (119c)

The eta (n) or normal component of the magnetic field (Bp) is expressed in terms of

the vector potential as

>]
3
"
N
Y
®
_€_3>
N—
3
1]
1]
1
w
QU
@

(120)

1
= X

a(sinh2 n + sin2 6)(sinh n sin 6)

(Note: Above equation continued on next page).
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] %
~ 2 2 AN 2 2 A
en(sinh n + sin 6) ee(sinh n + sin 6) ew sinh n sin 6
3 2 3
an a6 oY
0 0 A‘P sinh n sin 6
and 1
5 L
£ = cosh n, e, = e, = a(sinh2 n+ sin2 9) = a(&z—vz)
\) =

cos 8, e; = a sinh n sin 8

1
However, because the vector potentials in each region are functions of Pp(v), we

can simplify Equation (119) to constraints on Aw at the interfaces:

AwI = AMI at n = ”1 (121a)
AwII = AwIII atn = nz (121b)
AwIII = AwIV at n = n3 (121¢)

The second set of boundary conditions st.tes that the theta (8) or tangential com-

ponent of H across each boundary must satisfy the relationship

n, (Ez-ﬁl) =73 (122)




where 3; (which equals Jw(e)aw, is the real surface current density in the limit of
vanishing width between the two regions. Using the relationship B = uH, Equation

(122) can be expressed as

B B
82 _ 81 | 3,(8) (123)
H2 1

Referring to the curl in Equation (120), we can write Be in the form

V] $’ 0 e.e

= -1 8(é3Awl 1 3 ) Y
B, = (VxA, ), = < 5n = - — =F (g —1) Aw (124)

From Equations (123) and (124) the tangential components of B in regions I tirough

IV must satisfy the relationships:

() g e
-6

(125a)
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-V (125b)
€=€2
1 L
1 9_
_(“1) (2 2)1’2 9& [(52 1) A‘“V]
alg,-v
€=E3
L
1 1 2 2
Bt bl
al&,-v
E=E,
% = KG Pl(\))
= 3 JP(G) = Zl -*P—);z-g
=1 = 2
’ 3(53"’ ) (125¢)

The general expressions for the potentials in each region (Equation (118)) are then
substituted into the boundary conditions (Equations (121) and (125)) and solved for
the six constants (Ap’ Bp, Cp, Dp’ Ep’ and Fp). Because there are six equations
with six unknowns, the potential in each region can be determined. The six boundary
value equations are presented below. The index p in the summation sign has both
even and odd values and takes on values from 1 to . It is noted at this point that

the current density J (0) must be expanded into a set of associated Legendre

v




‘
S .Jui

o ——

functions to evaluate the constants in the vector potential (Equation (118)). The
detailed expansion is presented in Appendix B of Reference 8. The six
expressions for the boundary conditions are:
ii
3 1 1 _ 1 1 1
b ApPp (E,l)Pp(\)) = [Bppp(gl) + Cpr (‘51)] Pp(\)) (126a)
L
1 1 3 2 \* 1 1 1
| (“2) 1 & [(& 1) (,rh ) + ¢ ol®) Pp(v>]
' a@r”)
] £=E,
5‘
¥ b
: - (L) —— & (&2—1) (A pleeYel (v
v M1 (CZ 2)’5 9 PP P
als,=-v
9 1 £=gl (126b)
=
B pl(i ) +C Ql (i,z) pr(v) = [p Pl(E ) + E QL (5) pl(v) (126¢)
pp\72 p'p P pp\2 ppP\2/p
1 1 3 2 g 1 1
=y —2 2 |- P E Qt(e))p
(“1> (2 2)’/2 3E ( ) (Dp p(g) * pr(g)) pV)
a Qz—v .
&€,
s 1 1 1
(1 1 9 (52-1) (B P (£) + CQ (F,))P v)
SV )T 1 PP PP P
Mo 2 o\: %
a(Fz'V ) e, (126d)
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1 1 1 1 1
[DPPP(€3) + EPQp (53)] Pp(y) = Fpr(%) .ep(v) (126e)

i

W
e

1 1 5 2 V% 1 1
- <H) —L [(e: 1) (r,00¢9) Pp<v>]

j.‘-.‘ ~t3

3" : L —‘“‘l—r‘ _ ({2-1)‘/2(1) pl(g) + E Q1(£)> Pl(\))

. Hy (2 n?t 98 |V PP PP p

4 alfo-v )

3 &€

i 3
i

e o o pl(v)

¢ =J (0) =

4 (2 2)*2
alg5-v (126f)

© .

If we make the following substitution

it

1
A d 2 Vi1
PP(C) T [(& —) Pp(«i)] (127)

1
A d 2 )1
Qp(é) = [(E —1) Qp(&,)] (128)

and perform simple algebraic manipulations, the six boundary conditions can be sim-

plified to:

1 1 1,.
APp(f1) = BoPo(b1) + 60, (7))




(%-) [Bppﬁ (2) + ¢, (gl)] - (—i-;) AP0 (E) (129b)

2

1 1
B (E,) + €A (E,) - DpPll) &) + qui(gz) (129¢)

() Lo~ sen)] - (5) [t < ae)] o

DPP:IL’(%) * EpQ11>(£3) - Flel,(%) (129¢)

5, @)

P;(v)

(129£)

" (5) %) * (57) 2@ + () =) -

K G Pl(\))

where J (8) =
, P 4
)
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The solution of these six simultaneous equations to obtain Ep in terms of known

quantities gives:

-7 (@7 6) - ()% 6) <5 () B )

E =

P %_5 ([x] (z) PAp (g 2)) + %—2—([2] Qﬁ («52)) - (i—l)Qﬁ (52)

(i -5t

where [x]= — u1
1 - 2
( “2)
1
Q_ (&
(z]= - Ap( 2) -
CaZ(E2) + (%))
K G Pl(v)
J. (8) = ~——Jlll—1—— R for (v = cos 9)
p 2 22
a(g3-v
2 2 g
- ulJp(e)a(€3-v )
1 A
B P, Ve, (£3)
P

o (5) Q) (&)
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(130a)

(130b)

(130c)

(1304)

(130e)




el

¥imag)

I.1
ST _ ?E?p(gz) (130f)

P [xJP;(sz) + L (E,)

The numerical values for the other five coefficients can be obtained from the

following equations:

11
- 13
¢, = 3T+ E (2] (131a)

_ 13
B = (¢, (131b)
p = gt (131c)
p  p
1
Q (&
A =B +¢C —P—(—ll (1314)

p p P Prl> (51)

1-
¥ - Egiﬁlgil +E (131e)
Qp (53)

Because the six coefficients can be determined for a specified problem from Equa-

30)
tions (130) and (131), the potentials A o A¢II’ AWIII’ and A¢EV’

through IV can be completely determined. The normal (Bﬂ) and tangential (Be) to

in regions 1
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the surface n = constant (or £ = constant) components of tne magnetic induction in

] + each region I through IV can be determined by using Equations (120) and (124), to be:

» N 13 | (:2.)% ol pypl 13
Byy = - ZE —— & [(g -1) Appp(g)Pp(v)] (132a)

[ L oo1,,...1 ]
1 ) 2Y %A P (E)P_ (V) (132b)
B 1 = - — 5 [(l-v ) PP P

1
> ~ [t 1 _3__ 2- ¢ 1 1 1 132
b e [(& 1) (s,70® +Cpr(E))PP(\))] (132¢)
1 Pl a(g2v%)
1
- 1 3 )3 1 1 1
Bpir T - § Y % 53[(1-\’) (BPPP(D + CPQP(S))PP(\))] (132d)
p=1 a(gz_\)z)
1 3 2 \* 1 1 1 )
BMH - Y — T;Tg[(g -1) (DPPP(E) + qup(g))Pp(v)] (132e)

™Ms
—
-

1
3 2\ 1 1 1
K = - —_— 1— 132£
SnI1L v [( v ) (DpPp(ﬁ) + EPQP(E)) Pp(\))] ( )

=]
[}
—
n
—~~
o
N
1
<
N
~—
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oo |
Boyy = - > ——}—-r a_g [(52- )%(FPQ;(DP;(\)))} (132g)

o
[}
'—J
)
Ty
3%
§
<
N
S—
[ty
o8]

- ’
By = - pZ=jl a—(-g.iz_)g %\_)[(1_\)2) (FPQ;(C)) P;(v)] (132h)

PROLATE SPHEROIDAL SHELL SURROUNDING AN INFINITESIMALLY THIN
SPHEROIDAL CURRENT BAND

We now proceed to solve the boundary value problem of a ferromagnetic
spheroidal shell of homogeneous permeability Hos surrounding an infinitesimally
thin prolate spheroidal current band having a constant current density J, Figure
12 shows the cross section of the problem geometry. The coordinate system shown
previously in Figure 2 will be used in the solution. The boundaries of the prolate
spheroidal shell are determined by n = n, and n = n,. The steady state current

3 2

lies in the boundary n = n, and between 81 < B < 62. As in the previous problem,

1
the constant current density has only a psi component Jw(e)a , and thus the vector
potential has onl- psi component AWE@' The vector potential is a function of the
prolate sphero. . coordinates n and 6. The constant current density is expressed

by Equation (106) when the boundary n is changed to n = ny-
The governing partial differential equation has only a psi component and is

given by

XA = (-’,‘:Iw(n,e) =0 (in regions I through IV) (133)

When the vector Laplacian %X A is expanded in prolate spheroidal coordinates,

Equation (133) can be expressed as (see Appendix A of Reference 8)

anisinh n an 38|sin 8 36 (Y]

53(sinhn A )
a_[ 1 v ]+ _a_[ L 2 (singy A )]: 0 (134)




v = cos 0

. R Y
SRSt Wit B oo o

Figure 12 - Infinitesimally Thin Current Band Surrounded by a

Ferromagnetic Spheroidal Shell
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Adopting the following notation

cos © (135)

& = coshn, V

and following the logic presented earlier, the solutions for Alp in regions I

through IV have the general form
A = ¥ [K pl(g) + K Ql(g) Pl(\)) (136)
I'p 2%p P

The form of the components of the vector potential A¢ in each of the regions
I through IV is determined from Equation (136). These components of the vector

potential in each region are:

& 1 1 .
M1 - El [uppp(g)] PO (137a)
A = 3 (1l +x k@ [PPm (137b)
1288 g LPP PP P
A - 3 |urro +uek® | tw (137¢)
v T & | e PP P
_ 5 1 1
Ayrv pgl [Npr(é)] Pp(v) ) (1374d)

The P; functions are the assoclated Legendre functions of the first kind of degree

1 and order p, and the Q; functions are associated Legendre functions of the

second kind.
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’ At each interface, the basic laws of magnetostatics reduce to boundary condi-
| tions on B and H (see Equations (119) and (122)) that can be used to determine

o related boundary conditions on A:

;j Ay = Ay n=n (138a)
gl
£ A Thmm "W (138b)
.
[ Agrrr T Ayry . DT M (138c)
rl
'y ]
1 1 3 2
) (“1) 2 2} 9 (% _1) fonr
: a\& -y
; &= E1
! o
L L\t 3 {(24)} -
| +(”1) 2 2\% %% (g )A‘PI =2 3,®
- a<€l-\) ) £=E; P=1
1 (1384)
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E=E3 (138f1)

These boundary conditions are then used to evaluate the constants in Equation (137).
Using Ejuations (137) and (138) to solve for the coefficients (where the index p

takes on all values from 1 to ©) we get:

1 1 _ 1 1 1
2y (EP ) = [ 1P () + K0 (5] Py ) (139a)




1

a(&é—v

[L

3 T(:2.1\? [+ o1 1
o 2\ 52'[(5 -1) (IpPp<c> + qup(g)) Pp(v)]

s 2 % 1000
- & [(f, -1) (prp(app(v))]

7\
2 212
gz-\) )

£=

=J(8)=
p

1
3 {(;24)° 1 1 1
< [(a 1) (Lppp<g> + Mpqp(g)) Pp(v)] l

3 2 \? 1 1 1
___;_).g 52[(& -1) (IPPP(D + KPQP(.E)) Pp(v)]

1 1, Vol 0w Al vl
JPL(E) + mpqp(aj)] PLY) = N O (6P (V)
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&

K G Pl(v)
__ppP

1
5
a(Ei—vz)

E=E,

e=t,

(139b)

(139¢)

(1394)

(139%e)




Mo o o oi_suiesl el

wo

W NIRRT, T T STV e
A WA TR T e e

1 1 3 2 E( 1 1
(—') ( )1’ 3E (£°-1) (Npop(g))Pp(v)

ety

L
- (}_) 1 9 (52_1) (LPP;(E) + Min(E)) P;(v)

Ho 2 o\ 9E
a 53-V
£=8, (139f)
If we make the following substitutions

A d 2 Vi1
(D = g (e2-1) 2200 (140)

A d 2 (i1
GO = 5 [(g -1) QP(E)] (141)

and perform simple algebraic manipulations, the six boundary conditions reduce to:

1 1 1

(142b)

1 A A [1
_ (Ul)(xppp(gl) + KPQP(gl))+—\U1) P




1 1 N 1 1
IpPp(Ez) + KPQP(Ez) = LpPp(Ez) + MpQ (£2)

(142c)

(ﬁ-;) (;pp§(52> + a5y >= (%I)(IPPﬁ(gz) + Kpoﬁ@z)) (1424)
LPL(E,) + M Q(Ey) = N 0l(Ey (142¢)

(51) Q¢ (£, =( 3—2) (Lppﬁ(@ + Mpqﬁ(%>> (1426)

It should be noted in the above equations that the current density Jw(e) was

expanded into a set of associated Legendre functions to evalute the constants in

the vector potential components (see Appendix B of Reference 8)

he solution of these six simultaneous Equations (142a) through (142f) to
obtain Lp in terms of known quantities is:

1 II_A
(ul\)[J P (gz) +J Q (; )]
L =

(-ﬁl—) [v]e <g)+( Z)P(g)+(ﬁ_) [U]Q ) (143)




. where

]

A W,
Q (&) Q (&) 2
) - S
1
=]
)
1 1
PL(Ey) +[U]Q ()
1
Pp(iz)
K G P (V)
J (8) = -
2 3
«(5-2)
2 2 ¢
A 1
1 lPP(El)Pp(Z)
P
WY )

1 A
PLE)  RO(ED

(144)

(145)

(146)

!
|
|
(147) i
|

(148)




The numerical values for the other five coefficients can be obtained from the

following equations:

A K =J (149)

p P
3
e M =1L 150
§ . > p[_U] (150)
A 11
: I =J " =1L 151
5 - P P p[V] (151)
A
"‘» 1
P _(£,)
:% Np = Lp 2 3. Mp (152)
. Q ()
&
“
' 1
K Q (&)
H =1 + _pp "1 (153)

The components of the potential Aw in regions I through IV can be determined
because the coefficients Hp’ Ip, KP, Lp, Mp, and Np can be calculated for a speci-
fic problem. The normal (Bﬂ) and tangential (BG) components (to the surface
n = constant or § = constant) of the magnetic induction in each region (I through

IV) can be determined by using Equations (120) and (124), to be:

w 1
Bgr =~ 2

- 1
p=1 a(Ez—v2)1

3
21 (£24) (HpPi(a) P;(v)jl (154a)

\




Y ¥, e y aaiiier L ma
ot ol : "

nl

-- 3 ﬁg %{(l—vz)% (HpPi(é)) P;(v)}

=l éz-vz

o0
BnII =- 2

1 1 1
X (LpPP(ED + MPQP(E)) Pp(v)]
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(154¢)

(154d)

(154e)




’ 1
I 1 3 2\?
., Borrr = - 2 , J\E 3V (1"’) '}
p=]_ alg“-v !

e |l a Y S e
bt iy 2

1 1 1
54f

X (Lppp(g) + Mpr(g) ) Pp(\)) (154f)
i
b, 1
"‘_' 00 2 2
i Borv = - > 1 . 9_ (E’ _l)
»; p=l 2 2 %9
; a(e?-v?)
A 1 1
3 154
“ X (Npqp(g)) Pp(\)) (154g)
r .y 13 2\E 1 1
3 AN §1 (2 2)F B (1-\)) (NPQP(Q) FpV) (154h)
% P a(g -~ )

a PROLATE SPHEROIDAL SHELL WITH INTERNAL AND EXTERNAL INFINITESIMALLY
THIN SPHEROIDAL CURRENT BANDS

We now proceed to solve the boundary value problem of a ferromagnetic prolate
spheroidal shell of homogeneous permeability o with internal and external,
infinitesimally thin, prolate spheroidal current bands of constant current density
31 and 3}, respectively. The geometry of the problem suggests that a prolate
spheroidal coordinate system as shown in Figure 2 can be used in the problem solu-
tion. Figure 13, a cross section of the problem geometry, identifies the five
regions of interest. The boundaries of the prolate spheroidal shell are determined
by n = n, and n = N4, constants. The direct currents lie in the boundaries n = Nys
and n = N, constants. Regions I, II, IV, and V have a permeability equal to vac-
uum H_, which, for convenience, will be labelled Hy- In the problem presented here,
the current densities have only a psi () component [Jw(e)ew , Wwhich means that the
vector potential has only a psi component Awéw. The vector potential |A = Awéw is a
function of the prolate spheroidal coordinates n,e[i.e., Aw = AW (n,e)]. The con-

stant current densities, which lie on the boundaries between regions I and II and

between regions IV and V, can be expressed by the functions
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Figure 13 -~ Ferromagnetic Spheroidal Shell Surrounding and
Surrounded by Infinitesimally Thin Current Bands




0, if 6 < 61 or 8 > 62
J. = (155)

(e)’e\w, if 8, <8 <6,

A
D
A
D

% "n

! where le(e) is equal to a constant J1 along n = n1 for 81 <9 5_62 and

:-. . 7 s

= 0, if 8 < 61 or 8 > 62

= J, = (156)
R, if O g
sz(e) eys if 6] <6 <9

where sz(e) is equal to a constant Iy along n Ny for ei <9 5_6;. Therefore,

Equation (17) has only an azimuthal or psi component and can be expressed as

BA= B Kw(n,e) = 0 in regions I through V (157)

. When the vector Laplacian X K¢ is expanded in prolate spheroidal coordinates,

Equation (157) can be expressed (see Appendix A, Reference 8)

3 1 ? {(sinh n Aw) .\ 3 1 9 (sin 6 AW) -0 (158)
an sinh n an 36 | siu 9 30

Adopting the following notation

£ =coshn, v=cos®8

and following the logic presented earlier, the solutions for Aw in regions 1
through IV have the general form
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Ry 1 1 1
A, = ; [Klpp@) + xzop(a] P,W)

The form of the component of the vector potential Aq,in regions I through V
is determined from Equation (159). These magnetostatic vector potentials in

regions I through V are

. 1 1
> [APPP(E)] P )

1 1 7 .1
[Bppp(g) + chp(g) Pp(v)

1 1 1 1
[DpPp(g) + Epr(E) Pp(v)

1 1 1
‘FPPP(E) + Gpr(E) ] Pp(v)

- 1 1
2 Lupqp(r,) ] P (V)

Because the potential must be finite in each of regions I through IV, and approach
zero as £ > @ in region V, the following constants were set equal to zero:
1
1. For AWI’ the constant associated with Q;(g) Pp(v) was set equal to zero

because
Q;(E) > ® at § =1 (z axis between :a)
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2. For va, the constant associated with P;(E) P;(v) was set equal to zero

because

Pl(g)+masg+oo
p

(we note Q;(E) >0as £ > o).

Constants Ap’ Bp’ c, Dp’ Ep’ F, Gp’ and Hp are to be determined from the
boundary conditions. At each interface, the basic laws of magnetostatics (Equa-
tions (3a)) reduce to boundary conditions on B and H that can be used to evaluate
these eight constants. The normal component of B across each boundary must be
continuous, i.e., (§é¥§l) . Eiz = 0 where the quantity EiZ is the unit outward nor-
mal to the surface. This provides the following boundary conditions which must be

satisfied by the solutions given in Equation (160) for each region

BnII = BnIII at N =n, (161b)
BnHI = BT]IV at N =N, (16lc)
BnIV = an at h=n, (161d)

However, because the vector potentials in each region are functions of

Pé(v), we can simplify Equation (161) to comstraints on Aw at the interfaces

Ay = Ay At n=n (162a)
Aprr = Ay 3 "M, (162b)
Aprir = Ayy 3t N =y (162¢)

Ayry = Ay 3t N =N, (162d)
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The second set of boundary conditions states that the theta (9) or tangential,
component of H across each boundary must satisfy the relationship

Y

x (Hz—Hl) = JS (163)
where'js(which equals Jw(e))is the real surface current density in the limit of
vanishing width between the two regions. Using the relationship B = uﬁ; Equation

(163) can be expressed as

02 _ o1
M

= J, (8 (164)
2 1 v

The current must be expanded in a series of associated Legendre functions

P;(v) as in Reference 9. The form of the current is

0

J 2 v Pl (cos 9)
p=I_ PP (165
Jw(ﬁ) = 5 53 )
a(sinh“ n + sin“ §)?
where, using £ = cosh n and v = cos 8, Vp can be shown to be
(2p "2
~(2 +l) a / 2 2.1 1
vV = _ 3
p  2p(p+l) (E7-v) 7 P (V)av (166)
V1
For the two current bands of interest, we have
> ol
D DR A
W@ = —25 5 1
a(gf_vZ) (167a)




T ourewm

2 1
p 2
_ =(2ptl) a /'(2_2) 1 6
where Vp = 2p(pil) El \Y Pp(v)dv (167b)
v
1
= 1
J UP (v
2 gl P p( )
and J,.(8) = T (168a)
¥2 7 2}3
3(54‘V )
!
e 5 1
_ =(2pH) a /( 2Y Po(v) dv (168b)
where Up 2p(pt1) / F,lz‘ V p
v
1
and V] = cos 6; and v; = cos 8.
Referring to the curl in Equation (120), we can write Be in the form
3(e,A) L
5. 1 3 1 3 g
= = - e ———— 2 - 1
Be (VXAW)G N an A ; 3E (, l) A¢ (169)
a(§ -V )

From Equations (164) and (169), the tangential components of B in regions I through

V must satisfy the relationship




i~
P

-l 1 3 | p2 445
<ul>_—z‘% 5% [(‘5 D Awu]

a(g2-v?)
£=€,

00
1
Jy E VP, (V)
p=1

2 2.5
a(El—\) ) (170a)

= Jpl(e) =

L 1y 1 3 2 \k%
(”2>a<&:§-v2>% s (0% ]




™ Ty :,y.f,.;wj i-‘,?w- Lt

T T e

p—

 r———

a(gZ-v?)
£=t,
A L 32 4k
SV RGO R [®0% 1]
£t

(170d)

The general expressions for the potentials in each region (Equation (160)) are

then substituted into the boundary conditions (Equations (162) and (170)) and

solved for the eight constants (Ap’ Bp’ CP’ Dp’ Ep, Fp’ G_, and Hp). Because there

are eight equations with eight unknowns, the potential in each region can be deter-

mined. The eight boundary value equations are presented below. The index, p, in

the summation sign has both even and odd values. The eight expressions for the

boundary conditions are:

1 1., _ 1 1 1
AR(EDR (V) = [BPPP<51> * cpop(al>] () (171a)




-
;

i

el SHENGE
: »~

DA, s o A . b o i el

l‘ L

Ay 1 3 2_1y4 1 1,0\l
(&°-1) +C Q (E)P
(“1 ) a(Ei-\)z)% 9t [ : (Bppp(g) Cp%p (%) p(v)]

£=€,

"
[

S P S 2_1 % 1,0l
+<H>a@§N%% 5E [@ 1) HJ}@W}WJ l 51(®

2

1 1 1, 1 1 1
[3,75 ) + e, ] By =[pRhcey) + Eahey | Bl

1 1 3 | (r2_4\¢ 1 1 1
<u2 )a(gg-\)z)% 5 | &1 (DpPp(f;) +EPQP(E)> PV

1 1 d 2 L 1 1,- \ 1
= o — - £ 3 N
<“1>a(€§—\)2)% 3 (& 1) (BPPP()) + CPQP()))PP( )

1,. 1 1,0, 1,. 1, 1
[prp(t3) + Epr(€3)] P —-[FpPp(c3) + cpop<n3)J PV

(171b)

(171¢)

: F,z (171d)

(171¢)




1 1 d 2 .5 1 1 1
— )T 57 | ¢E°-1) FP () +¢G
<“1>a(€§-\)2)l§ 13 < pFp (%) pr(€)> Bp (V)

= [ Ly___1 3 2_\% 1 1 1
<u2)a(€§_v2);§ 5 [(g 1) <nppp(a> +Epr(a>>Pp(v)}

1 1 3 2 .\ 1 1
-2 =t = | E-DHEQCE ] W
( “1>a(£,2‘-v2)% o <p b )p

1 1 ) 2 % 1 1 1
H = =T = | E-1D)2{F P () + G Q ()P (V)
<ul>a(€z-\)2)/2 t13 [ <p P PP >p }g

By making the following substitutions

A
P8

A
Q&)

Q)‘OJ

] 2
a—[(g -1)
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2 .5 01
E[(& 1) Pp(&)J

%

-

1
Qp(E)J

3

&4

£=¢,
£=£3 (171f)
(171g)
= Jpz(e)
=€, (171h)
(172a)
(172b)

S e M et




aad performing algebraic manipulation, the eight boundary conditions can be simpli-

fied to

1 o1 1
API(E) = B (E)) + CQ(E)

(173a)
1 A A 1 A
(2 }[sp ' -1 :
™ [ JPoE) + chp(El)J “(m [ApPp(él)]
1
Ip1 () a(eivh)®
) pL(v) (173b)
P
BP(E) +cale,) = b pre) + 5ol (173¢)
pp 2 pp 2 pp 2 pip 72 3c
1\ [o iy +ea’c ] = (2Y[6 ric) NG 73
(;i> [ pp 2 PP ‘2] uy [ ppp(“Z + Cpr(~ 2)] (173
L .
1 1 1 1. ,
D P(F. s qly = £ R 730)
. p(,3) + rpr()3) FpPp(,3) + rpr< , (i73¢
B A — _ 1 AL b, .
(UJ) [Dplp(&3) + LPQP(E3)] = (Lﬁ-)[?ppp(g3) + LPQF(u3)] (1731)

1 1 1
[FpPp(&A) + Gpr(ga)] = HQ ()
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3,28) a(es-vh)?

P;(v)

Q(E)
Ap = Bp + Cp 1
Pp(El)

1
%3 =

rulJpl(e) 2(£,-)

1 A
§£w~%(%)

e P [ 1 A
B SV

1 A
RACUEERE SO

ke et
F,= k) —ﬁ}—ii— - ¢, —g 3 4
PL(Ey) P(E,)

E, =D [e] - G, [r]

cC_= = =

2 A 1 A A
F32) (eed) * () (it + )

The solution of these eight simultaneous equations to obtain the constants

gives:

(174a)

(174b)

(174¢)

(1744)




Jzﬁggﬂkﬁﬁﬁi‘ e

>
12
1

where

where

_Lp “3
[R]= = .
Qhs) <u >Q (£y)
L 20 [ Ly p 37
1.¢ 1 I
P (" '
p( ;) 2 pp(gB)
[l
B =1 + D |S] -G z (174e)
p =t * pls] -, (7]
N ;2 2 %
Hy Jpl("”) a(fi-v )
1 A,
Qo) OB
_]I _L),A:_* ]I =
pl * pl 1 N
}1 ( )) A ‘r
P - QI’( ])7 QP(']-)
1 e 1‘\
P(
p( l) Pp( 1)
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2 1
; Q (5,

(s1 = [1+ (@1 2
Pl
{ Q)
s (21 = () 22
X PLE)
5 _ III
- D=3+ (U] G, (174)
'.
7 1 JIL G0
- Q(€)+( ) P(E)
_,‘ 111 (Ul) pl P l

where J =

B Pl [( )[S]P(£)+< )P<e)+( )[Q]Q(E)]
M1 ) M2

A {;,‘u_i‘g":‘-'

e

( >[Z]P(€)+< >[R]Q(€)
Hy
[ =
[( )[S]P(€)+( )P(a>+< )mo(a)]
1 Hy L)

Ho=G s (174g)

p p2
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N i, o

(A & P

where

wnere

I =

JI

I p2

"2 " [)- 1]

1,
(A] - Q)

1
Pp(&a)

TI1 I1I 11
. =_:]_pl [Q] [H]—Jpl +JJL2 (A]

p (Ul [Q] [H] - [R] [H] - [H] + [U]

()% e+ () ni
111 SR 1/ Pt

pl oL . N oy el Y o o
K ulysl}p“2)+<u2)}p(3)+(L3>1“]“N zq

J (0 a(riovy
L My Ypatt Ay

VN
PUCE,) P(Y)
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Because the eight coefficients can be determined for a specified problem from
Equation (174), the potentials AI’ AII’ AIII’ AIV’ and Av in regions I through V
can be completely determined. The normal (Bn) and tangential (BG) components of
; the magnetic induction in each region, I through V, can be determined by using

! . Equations (120) and (124) to be:

' ©o 1
',.' Bor = - 2 —1—1/- %E [(EZ_I)'i (APP;(E)) P;(V):' (175a)

5 1 1
3 3 2)* 175b
Br= - X ——z‘l“z‘T/Z ™ [(1-\’ ) (APPP(Q)PP(\))] (175b)
R p=1 a(E ~Vv )
.: .
- __ & 1 3 2 NP 1 1
Byry = - 2 T, % % [(é -1) (BpPp(i) + Cpr(g)) Pp(v).‘ (175¢)
b, p=1 a(& +?) J
R~ 1 3 [ .2y 1 1 1
Barr T T Z=1 s g\ oV [(1 v?) (B P, (8) + Cpr(D) Pp(v)] (1754)
P a(@ -V )
1
. _ ¥ 1 9 2_1Y (b p! 1 1
Boriz = - 2 Nz € [(E -1> ( pPp(8) + Epr(€)) Pp(v)] (175e)
p=1 a(Ez-v )

13

- .- 1 3 2\? 1 1 1
BnIH =- 2 = I av[(l-v > (Dpl’_p(g) + Epr(g))Pp(v)] (175£)
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1 2 % (r pl(e) + 6 Q¢ )Pl W) (175g)
Borv = - ; E';)'g'[(éz‘l)<PP pop (& )%

b o .

) i} 1 3 A% (s olen + ¢ ol ) ! (175h)
= Botv = - , % v [(l—v) (FPPP( 3 pr(D p(\))

i~ p=la(£2-02)

: i 1 3 <52-1> RGN (1751)
3 =1 2 2

i P a(g -v )

£

1 |

&)

2 1 1 .
(1753)
HpPp(é)Pp(v)] j

o0
- - 1 g_(_z)
By Z—————a\)[lv




APPENDIX A

FERROMAGNETIC SPHERICAL BODIES IN A CONSTANT
EXTERNAL INDUCING FIELD

INTRODUCTION

In previous work Brown and Baker7 derived the closed form mathematical expres-
sions for the magnetic flux density for two configurations of a magnetic spherical
body surrcunded by a stationary current band of azimuthal spherical symmetry. The
first case treated was for an infinitesimally thin stationary current band surround-
ing a spherical magnetic shell. The second case is for a stationary current band of
finite width surrounding a solid magnetic sphere. The magnetic bodies were assumed
to be linear and homogeneous,

Ihe problem of the magnetic induction for an infinitesimally thin current band
surrounding a sphel ical shell can be generalized to include an external magnet ic
tield. The superposition principle discussed in the text of this report can be
used in these two cases to include a constant external magnetic field. The magnet ic

induction in each region for a three-dimensional magnetic spherical shell in an

arbitrary external magnetic field ﬁg is added to the magnetic induction for the
corresponding region for the spherical shell surrounded by and/or surrounding a
stationary current band. The problem of deriving the magnetic induction for a cur-

rent band of finite width surrounding a solid ferromagnetic sphere can also be

peneralized to include an external magnetic field EO in a similar manner. Thus, the
masnetic indaetion for a ferromagnetic spherical body in an external magnetic field
Sanst o be determined .,

both constant external field problems were solved by Nixon" of the Center.
The closed form mathemat ical solutions for the magnetic induction for both constant
~xternal field problems were presented in Reference 6 in Cartesian coordinates. 1t

was neces,ury to convert these mathematical expressions to spherical ceoordinates to

be compatible with this work,

SOLTD FERROMAGNETIC SPHERE IN AN EXTERNAIL INDUCING FIELD
fhe nolid ferromagnetic sphere in a constant external inducing field is shown

mobnre Al The permeability of the solid sphere is ji, and the radius of the

<

splivre o Hl. The permeability b of vacuum that is external to the sphere is
: [§
denoted by e The constant arbitrary magnetic field is designated as HO
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It is assumed that by in the sphere i{s constant, and that Hy is constant in the
region external to the sphere. Because there are no currents in any region in the
problem, the magnetic field H can be expressed as the negative of the gradient of a

magnet ic scalar potential ¢m in regions I and II, respectively,.

= s h
H, Vo, for 0 < r < R, (A.la)
T,
Hio V,IIm for Ry < T <= (A.1b)
where
B, = uZHI (A.lc)
11 - Mt (A.1d)

The major step toward solving this problem is to determine the solutions of the
scalar Laplace's equation in regions I and II which satisfy the boundary conditions

at r = Rl. In terms of B and H the magnetostatic boundary conditions are

(By;=By) " ny, =0 at r = R, (A.2a)
ny, x (H =)= 0 at r = R, (A.2b)
where n is the unit vector normal to the surface of the sphere from region I to

12
IT.

The general expression Of'¢l and ¢IIm which satisfy Laplace's equation in
m

regions [ and II are:

0

m Ar sin Y cos y + Br sin 6 sin ¢ + Cr cos & for 0 < ¥ < R1
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S

2

sin 6 cos ¥ + Er2 sin 8 sin Vv + Fr™2 cos ©

Ormm = OF

- Hoxr sin Bcos Y - Hoyr sin 0 sin ¢ - Hozr cos 6

for Rl <r <= (A.3b)

The coefficients are determined by the magnetostatic boundary conditions (see

Equations (A.Za) and (A.2b) and are:

3ulHox (A.4a)
u2+2ul

3UIH0X
ST (A.4b)
2%eH

3uyHo, (A.4¢)

Hot2hy

3
. Ry Guy-uH (A.4d)
(u2+2ul) ’

3
R (u,-p,)H
F= L 2 1 o (A.be)
(u2+2u1)
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3
Rl(uz—ul)ﬂoz
oty

F = (A.4F)

1 For details of this derivation, the reader should consult the work of Nixon.

The authors have transformed his mathematical expressions for the magretic induc-
This makes the

tion in regions I and II from Cartesian to spherical coordinates.
v
l expressions for the magnetic induction compatible with the present work of this

5
report. These mathematical expressions are in regjons I and II:

El(r,ﬁ,w) = - ui@;(A sin 6 cos y + B sin 8 sin ¥ + C cos B)

- Uégé(A cos B cos Yy + B cos € sin ¥ - C sin B)

A .
~ u2e¢ ~A sin Y + B cos ) for 0 <r fle (A.5a)

B (r,” ) =+ Uis;(ZDr_3sin 8 cos P + 2 E]:_3 sin 6 sin y + 2 Fr—3 cos 8

+H sinvcos{y +H sin 6 siny +H__ cos §)
ox oy oz

- u[g%(Dr‘J cos 6 cos Y + Er™> cos § sin Y - Fr™3 sin 8

Note: Above equation continued on next page.




-

-H cosBcosy -H _ cos 6 siny +H _sin 6)
ox oy oz

A -3 . -3 .
- ulew(-Dr sin ¢ + Er ~ cos § + H sin /. Hoy cos ¥) (A.5Db)

where B= - ﬁv¢m (A.5c)

~ B¢m ‘Qé a?m 4%/ aﬂn
and V= e 3r T Er_-+ r sin 6 oV (4.5d)

FERROMAGNETIC SPHERICAL SHELL IN AN EXTERNAL INDUCING FIELD

The problem of the spherical shell is similar to the problem of the solid
sphere. The inner radius of the spherical shell is Rl and the outer radius is R2
(see Figure A.2). The permeability of the magnetic material in the shell is My
and the permeability o of vacuum that is internal and external to the shell is
denoted by Hy - The constant external magnetic field is designated by ﬁ;,

The problem of deriving the closed form mathematical expressions for the
magnetic flux density in each of the tluree regions (I through III) was worked out
The problem was solved in a method exactly analogous to the
For details of

in detail by Nixon.

problem of a solid sphere in a constant external magnetic field.

the derivation consult Reference 6.

The general expressions for the magnetic scalar potential ¢m in regions

I through 111 are:

¢Im = Ar sin 6 cos Y + Br sin O sin Y + Cr cos 8 for 0 <r < R1 (A.6a)

O m = (Gr+Hr-2) sin 8 cos Y + (Ir+Jr-2) sin 8 sin Y

(A.6b)

+ (Kr+Lr_2) cos O for Rl <r < R2
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1%

2

¢ Dr-2 sin 8 cos Y + Er < sin § sin ¥ + Fr-2 cos 6

IlIm

-H _ rsin® cosyY -H r sin 6 sin ¥
ox oy

-H r cosf for R, < r < (A.6c)
0z 2 —

The coefficients are determined by the usual mzgnetostatic boundary conditions

on the spherical surfaces at r = R, and r = R,. The coefficients determined by

1 2
this method are:
-1
(2ul+u2)(2u2+ul) 2(u1—u2)
H= -3y H (A.7a)
1 (= )R3 R3 ox
27H0 %y 2
(2Zu,+Hi,) H
G = ——-—-2-—*——1‘—3—‘ (A.7b)
(uz—ul)R1
L3 3
D = GR2 + H + Hox R2 (A.7¢)
-3
A= G+ HR; (A.7d)
Qu ) (2w ) 2, | 7t
J = .3 1772 2771 1772 " (A7
2] 3 oy A.7e)

3
(u2~ul)Rl R,




X (2u,+15)
| 1-—21_ (A.7£)
: (h,-1,) B
271 1
v
L E=1IR>+J+H R (A7)
b 2 oy 2
e
g -3
b < B=1+ JRl (A.7h)
o8
: -1
2 (20 +1,) (20, 414) (2p -4,)
i L= =3 L 22 2 10 1 2 H (A.71)
£ 3 R2 oz
5. P
: (,-up) Ry 2
>
is
1]
y (2u,44,)
*
o+ k= —2 L (A.7))
(,=Hp) RO
271 1
: . 3 3 -1
po= }\l\z + 1+ HOZ R2 (A.7TK)
-3
C =K+ LRl (A7)
The authors have transformed Ni.xon's6 mathematical expressions for the magnetic
induct fon in regions 1 through II1 from Cartesian to spherical coordinates. This
maken the expressions for the magnetic induction compatible with the present work of
this report.  These mathematical expressions in regions 1 through 111 are:
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EI(r,e,w) = - ,ul/e\r(A sin 6 cos ¢ + B sin 6 cos Y + C cos 6)

' - ul/e\e(A cos § cos Y + B cos B8 cos § -~ C sin 6)

{

9

- ulﬁ\w (- A sin Yy + B cos V) for 0 <r < Rl (A.8a)
Eu(r,e,w) = - pz/e\r [(G-Zr_3H) sin 6 cos Y

4 3 -3

o + (I-2r ~J) sin 8 sin ¥y + (K-2r "L) cos 6

>
4 A~ -3 3

r - U,y [(G+Hr ) cos 6 cos Y + (I+Jr )

! (cos 6 sin ¥) - (K+Lr-3) sin 6]

' A -3 . -3

1 - uzew —(G+Hr 7) sin Y + (I+Jr ) cos ¥

: for Ry < r <R, (A.8b)
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= _ A -3 -3

BIH(I,G,W = + Hiel [ZDr sin 9 cos Y + 2Er ~ sin B8 sin {

Fy + 2Fr_3 cos B +H sinB cosy +H sin 6 sin Yy + H _ cos 6]
ox oy oz

A -3
= H1% [Dr cos B cos y + Er™> cos 8 sin 7 -Fr-ssin 8

- Hox cos O cos U - Hoy cos 0 sin y + Hoz sin 9]

8

3 N\ =3 =3

£ - - { i -

5 ulew[ Dr sin y + Er cos ¥ + Hox sin Y Hoy cos ] (A.8¢)
X

' where B = - u7¢m (A.84d)
e

. P NPT e 3¢

# 5 - A m 8 m m

s and V= r Br r a0 + r sin 86 3y (a.8e)
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: APPENDIX B

DERIVATION OF THE COEFFICIENTS OF THE VECTOR POTENTIAL
4 FOR A SOLID SPHERE SURROUNDED BY AN INFINITESIMALLY
' THIN SPHERICAL CURRENT BAND AND REDUCTION OF THE
MAGNETIC VECTOR POTENTIAL TO THAT OF A THIN
BAND IN VACUUM WHEN IN THE LIMIT Uy EQUALS My

'y DERIVATION OF THE COEFFICIENTS

f{,' In this appendix the coefficients are derived for the vector potential in

f; regions I through I1I for a ferromagnetic sphere surrounded by an infinitely thin

5 current tand. For a detailed discussion of this ferromagnetic problem, see the

g2 section in the text of the report entitled "Solid Sphere Surrounded by an

. Infinitesimally Thin Spherical Current Band'. The magnetic vector potential in

N : . . - . 4
] each region is given by:

1 A = A EE (A rp)Pl(cos 0) (B.la)

{ I I pl- /'p

i p=1

Ly

- = | B2 1 ;
4 = = P4, __Pc i
4 AII AwII 2: Apzr + (prD) Pp(cos 6) (B.1lb) ‘
P p=1 L r

¢

J e [ B 3 1

f AIII = ATLII = z: ;?%ITY Pp(cos 8) (B.1lc)

p=1

The coctricicnts (Api) and (Bpi) in Equations (B.la) through (B.lc) are obtained by
substituting these cquations into the boundary conditions (Equations (B.2a) through

(hL2d)) .

I1 I[II 2

129




1 1 3 1 1 3 - -
- My T dr (rAII) * ﬁ;- T 5?'(rAI) =0 at T ol (B.2¢)
N
1 1 3_ 1 13 . - =
- My or or (rAIII) * My T or (CAII) =3 atr =R (B.2d)

After appropriate substitutions of Equations (B.la) through (B.lc) into Equa-

tions (B.2a) through (B.2d), the following boundary value ~quations are obtained.

i

.'
! P _ p ~(p+l)
{ ARy [Aszl +B R (B.3a)
p -(p+1)] _ -(p+l)
[APZRZ +B R, B 3R, (B.3b)
- Lla, eyr{PD) _ R‘(P+2)J+ L [A 1(P+1)R§p—l)] =0 (B.3¢) !
o [ p2 \PTHIRy p2P™1 i, P |

J _(8)
1 (B.3d)
Pp(cos 0) !

1 -(p+2) 1 p-1 -(p+2 )J _
[”1 B 3P, ]+-[ul]P&ﬂ(p+1)R2 - BB R,

These algebraic equations provide four simultaneous equations, with four

unknowns, which can be solved for the coefficients A ., and Bpi by algebraic mani-~

pi
pulation,

Solving Equation (B.3a) for Ap and Equation (B.3b) for Bp3 we have

1

130




T e
b

Ay=A,+B g (2p*1) (B.4)

P -(p+l)
5 - AnaRy * Bk (8.5)
p3 g-(P+L)
2
Solving Equation (B.3c) for Apl gives
Uz B 2PRI(2p+l)
A=t o A - e (B.6)
P 1J|L P (p+1)

which, when substituted into Equation (B.3a) and solved for ApZ’ yields
-(2p+1) §

y PR
_RI(ZP"-I) - _2_ 1 J (B.7)
My (p+l)

A =B
Hy

Substituting Equations (B.5) and (B.7) into Equat ..n (B.3d) gives the expression

for sz

( _ “_2) byd (8)
“1 Pl(cos )
= P

B -
p2 ¥
-(2p+1) p-1 2 P
<—Rl >(2p+l)R2 (1 +(—~Ul) (P+1)>

(B.8)
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Simplifying Equation (B.7) by using Equation (B.8) yields

RO

- A, = (B.9)
.i»ﬁ p2 (2p+1) Rép_l)Pi(cos 8)

4

;él' The following expression is obtained for Apl from Equation (B.4) after substituting
¥ Equations (B.8) and (B.9) for B__, and A ,, respectively, as

3 p2 p2

E Mo\ 1y (8)

9 u [ 1 - _j§>.5%_IL__.__

b 1JP(6) = P5(cos 6)

;:. Apl ) (2 +1)R(p—l)Pl(cos ) i (p-1) Hoy 7 (8.10)
2 PT% p © (2p+1)R, 1 +(——- —R

3? H (ptl)

X

The mathematical solution for Bp3 in terms of known quantities is obtained from

Equation (B.5) by substituting the previously obtained expressions for Ap2 (Equa-

tion (B.9)) and for sz (Equation (B.8)).

(2p+1)
K, J (8)R u u.J (6
1 E 2 i - ...2 _i_P_)___
P (cos 9) Yy A\ p (cos B)
B3 = —5 £
P p-

(2p+1)R u

2 -(2p+l) ) (p-1) T2
( Rl . (2p+l)R2 1+ “1 o+ 1)

(B.11)
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After the numerical value for B
P

is calculated on the computer for a specific

problem, the numerical values for the other coefficients can be obtained from the

following equations:

d !
3 Mo\ 1T (9) !
hy _.~g> 1"p :
( M1 Pl(cos 8)
B = £ : - (B.12a)
(—R'(2p+l» (2p+l)R§p—l)(1 + (_Z)_JL_>
W, ] ptl
1
HyJ (%)
P;(cos 8)
A = (B12.b)
p2 (2p+l)R§p_1)
Hy\ Hpd (6)
(l ) —) -1_——_2—-—-
H
R - U%in?)l ) 1 EP(cos a)
p p- ¢ H
(ZprDR," 7P {cos 0) p+yrP1 4+ (22) B (B.12¢)
2 Ul ptl

REDUCTION OF THE POTEMTIALS WHEN UZ EQUALS Hy

The vector potentials for this problem should reduce to those of an
infinitesimally thin current band in a homogeneous medium with permeability by

in the limit as i, = ul (see Figure B.1l). In this limit the coefficients should

2
assume the following form
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Nt

- ‘-;E

£ 0 (B.13)

Apl - Ap2; Bp2 -

where Apl and Bp3 should reduce to the coefficients for the potentials in the two
regions for the spherical band problem of Appendix B in Reference 7. One
immediately observes, from Equation (B.l2a) that sz = 0 when Wy = Wy. From Equa-

tions (B.12b) and (B.12c) we see that

[ uyJ (6)

L Pl(cos 8)
. P
(p-1)

n
=

(B.1l4a)

p2 (2p+1)R

Apl B Ap2 (B.14b)

From Equation (B.1l), in the limit of My = My, we have

u.J (9)
B . = L p (B.15)

p3 -
Rz(p+2)(2p+l)P;(cos 9)

Rewriting Ap we have

1

e o AR




This means that in the three regions the components of the vector potentials

used in Equations (B.l):

o
p 1
A = A .r" )P (cos 0) (B.17a)
3¢ 2 (pl ) p(
p=1
L
El
l:..
&0 P B 2 1
Ay = 2 AT+ —pr1y|Bplees ©) (B.17b)
p=1 L r
: = [ B |2
i A¢III = 2: D) Pp(cos 8) (B.17¢)
B p=1 LT
(
; reduce, when p, =y, to the form
.
[
A
- ao .
A = A =3 pl .1 (B.18a)
. 128 11 A .. P
h Y el | WS r p(cos 8)
'A H2™
ff
3 1
: AwIII = 2: Bp3‘ r-(p+l) Pp(cos 8) (B.18b)
: p=1 _ J
: Moty
F
’ The mathematical expressions for Apl and Bp3 (see Equations (B.16) and B.15),
respectively), for the ferromagnetic sphere surrounded by a thin current band in
the limit as “2 = ul, are the same as for the coefficients APl and sz (see Refer-
ence 7, Appendix B), respectively, for the components of the vector potentials in
. the regions of the current band in vacuum. For comparison, the coefficients for

the current band problem are:




| Ay - pZRI(2P+1) (B.19a)

*: ulJP_(G) N
P B = (B.lgb
p2 P;(cos e)RI(P*Z)(2p+1)

g? and the coefficients for the ferromagnetic sphere problem with M, = W, are
A

b

3 ,

¢ = -(2p+1)

. A, =B p B.20a
&. 1 p3R2 ( )
»

)

%

v I (6)

' B, = P (B.20b)

p3 Pi(cos 6)R;Tp+2)(2p+l)

It is noted when making the comparison, R2 must be set equal to Rl'




APPENDIX C

3 DERIVATION OF THE COEFFICIENTS OF THE VECTOR POTENTIAL
3 FOR AN INFINITESIMALLY THIN CURRENT BAND SURROUNDED
; BY A FERROMAGNETIC SPHERICAL SHELL AND THE REDUCTION
. OF THE MAGNETIC VECTOR POTENTIAL TO THAT OF A THIN

% BAND IN VACUUM WHEN IN THE LIMIT u, EQUALS ki,

};. DERIVATION OF THE COEFFICIENTS
In this appendix the coefficients are derived for the vector potential in

:i‘ regions I through IV for a ferromagnetic sphere surrounding an infinitely thin cur-

s rent band. For a detailed discussion of this ferromagnetic problem, see the sec-

tion in the text of the report entitled, "Hollow Sphere Surrounding an Infinitesi-

3 mally Thin Spherical Current Band". The magnetic vector potential in each region
‘?l' is given by:
\
¢
. m .
-,: = = P C.1:
; AI AwI 2: [Aplr ]Pp( cos 9) ( a) ‘
> Pl :
# !
A
- P BEZ 1
= = + e C.lb
Ary Ay > Aot D) Pp(cos ) ( )
=] r
p
- Bp3 1
= = P c.1
A1 AVIII 2: Ap3r + ) Pp(cos 8) (C.1lc)
p=1 r
e 1 Poa 1
= I = ) ‘.
Ay = Ay > ory | Pplcos W (C.1d)
p:l r
ihe coefficients (Apl and Bpl) in Fquations (C.la through C,ld) are obtained by
subst itut ing these equations into the boundary conditions (Equations (C.2a)
through (C.2{)).
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(C.2a)
(C.2b)
(C.2¢)
1 1 3 1 1 3
- Lll 3% (rAII) + U_l- T 3 (I‘AI) = J(B) r = Rl (C.2d)
_ 11 9 1 1 3
Hy T 3r (rAIII) + EI' T 5;'(rAII) =0 r =R, (C.2e)
t i
1 1 3 101 3 ~
W ox 37 (FApy) t W, r 3r (rAprp) = 0 r =Ry (C.2f£)

After appropriate substitutions of Equations (C.la) through (C.1d) into Equa-

tions (C.2a) through (C.2f), the following boundary value equations are obtained. H
P _ p ~(p+l)
Alel Aszl + szRl (C.3a)

p -(p+l) _ p -(ptl)
Ap2R2 + BPZRZ Aszz + Bij2 (C.3b)
A RP 4+ r(PHD) _ g p=(ptD) (C.3¢)

p3 3 p33 pé 3




A PP

3 J_(8)
, 1 (p~-1) ~(p+2) 1 (e-Di__"p ]
J - 1 - = |a +1)R = (C.3d)
4 Lll[xpl(p-k )Rl pole ] + ul [ pl(p ) 1 P;(COS 3)
&
f::. ~(p+2)|
» 1 (p-1) -(p+2) 1 (p~1) - PE_,R =0
g 7 {Apa(P+l)R2 - PBaRy ] + ul[%pz(P+l)R2 P2,
2 (C.3e)
1 -(p+2) 1
— | pB ,R + —|aA (p-1) -(p+2) | _ (C.3f)
Ul [ p4 3 } “2 [ p3(p+l)R3 - po3R3 } = 0

f The algebraic equations provide six simultaneous equations with six unknowns to
? whiich can be solved for the coefficients Api and Bpi’ by algebraic manipulation.
,: solving Equation (C.3a) and Equation (C.3d) for Apl’ respectively, we have
>
L
- -(2p+l)
] Apl = ApZ + szRl (C.4a)
-(2p+l
| MIO B pr; 2P
‘ Ay =T RUPT A, - R (C.4b)
j ! P (cos 0) (p+l) P (p+1)
[
1 A
Equating (C.4a) and (C.4b) and solving for sz yields
%
| +2
j Hyd (G)Ri ,
' B, = P = J_(®) (€.5)
p (2p+L)P(cos ) P
l
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1

Using Equation (C.3c) to solve for Bp4 we have

- (2p+l)
Bp4 Ap3R3 + Bp3 (C.6)

and similarly, using Equation (C.3f) to solve for BP4’ we have

((E+1)) (2Pt _
P 3

B A c.7
p4 Wy | P3 p3 (.7

Now, upon equating Equations (C.6) and (C.7) and solving for Bp3, we obtain

B s = Ap3[XJ (c.8)

-R(2p+1) 1 + Ell .&l
where [X] = "
E-3)
)

Solving Equation (C.3b) for Ap2 and substituting Equation (C.5) for B ? yields

_ ' ~(2p+l) -(2p+1)
Ap2 = - Jp(e)R2 + Ap3 + Bp3R2 (C.9)

Using Equations (C.5), (C.8), and (C.9) in Equation (C.3e) yields the following

expression for Ap3
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-(p+2
| o7 [ 7560 prre; 47
p3 Tl D L L ~(p+2) _ L_ (p-1) , 1_ -(p+2>J
[u (p+l)R2 + [XJ(p+1)R2 - 0 (p+l)R2 + ™ P[X]R2
(C.10)

jze]
~~
N
e
+
'—4
3
PR
=
+
I T
[
N
E
H
S
[

where [X] =

g +2
P by J (B)RE
J () = =P
P (2p+l)Pp(cos 0)
i The constants have now been found. After the numerical value of Ap3 is calculated
7? for a specific problem, the numerical values for the other coefficients can be
obtained from the following equations:

sz = Jp (9) (C.11a)

.

a

‘ By = Ap3[x] (C.11b)

|

F p _ -

| Ay = - Jp(a)Rz(z"”) + A3+ BoR (Zp+1) (C.11c)

i

|

[

|

|

! - -(2p+1)

! App = Ay BLE) (C.11d)

B L




- (2p+1) . c.11
Bpa = Ap3R3 + BP3 (C.1lle)

REDUCTION OF THE POTENTIAL WHEN uz EQUALS ul

When Hy is set equal to My the above ferromagnetic problem reduces to that of
finding the potentials in the two regions of a simple current band (see Figure
(B,1), because the ferromagnetic shell will now have a permeability M1 equal to that

of the homogeneous medium with a permeability My In this limit the coefficients

should assume the following form:

Apl # 0 Bp2 B Bp4
Apz =0 Bp3 = Bpa
Ap3 =0 Bp4 £ 0 (€C.12)

where Ap1 and Bp4 should reduce to the coefficients for the potentials in the two
regions for the spherical band problem (see Reference 7, Appendix B). 1If the
coefficients assume this mathematical form it will prove that the mathematical
forms of the coefficients for the spherical shell surrounding a thin current band

are mathematically correct.

The coefficient A 3 will now be evaluated when the limit is taken with uz =

=y
1
which causes [X] to approach infinity (see Equations (C.10)).

L 5" pi1yrs(P+2)
LR 2

A = Rimit

p3

1. (p-1) 1 -(pt2) 1 (p-1), 1 -(p+2)
; [X]‘* © ul (p+1)R2 + Ul [X] (p+1)R2 - '—ul(p+l)R2 + q P[X]RZ
Ha=
2 "1

(C.13)
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Yorii?

S

8

MR

p3
Hy=Hy
u.J_(6)
1 l P
where J =
P (2P+1)RI(P+2)P;(COS 8)

The expression for sz (see Equation (C.lla)) is

= C.l4
p2 =I5 ( )

/ /
The expression for B when y, = u, is still J since J is not a function of
p2 2 1 P P
(%]

C.15)
p2 p (

Hy=H

The expression for Bp3 (see Equation (C,llb)) is

By = Ap3pq (C.16)
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where “2 = ul, Bp3 can be written as

1 - (p+2)

p3 = Rimit 1 (p-1), 1 -(p+2
—(p+1)RP Ty — x] +)RCPH. L (b-1), 1_ - (p+2)
_ [x]>= (™ 2 “1[ (IR TP DR e S [x]R
Uy=q 1 1
2 "1
1 [ ~(p+2)
—IX}J (2p+1
(e
= 2imit 1 )
-\p
; . x]
[},]—»oo nl[ (2P+1)R2 (C.17)
B = J,
p3|  p
H2=Ul
The expression for Ap2 (see Equation (C.llc) is
_ 4 —(2pl) -(2p+1)
ApZ - JpR2 + Ap3 + Bp3R2 (C.18)
when uz = ul’ApZ can be written as
! -(2pt+l) ~-(2p+l)
= - +(B
Ap2 JpR + Ap3 p3 R2
Hy=Hy Hy=y Hy=Hy (C.19)
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¥
{ aal masl o
HoHy  HTHy
:1' The expression for Bp4 (see Equation (C.lle)) is
43
“..
= B (2pt1)
; By = Aj3Rg + By
T
1 - -
Z when “2 “l’ Bp4 can be written as
# (2p+1)
Bp4 Ap3 B3 + Bp3
3 H2™Hy H2™Hy Ha™Hy
J
X . K
B B =
p4 p3 p
U2=U1 U2=U1
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(c.21)

(C.22)

(€.23)
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The expression for Apl (see Equation (C.11d)) is

_ -(2p+1)
Ay = Ay +BR)

R—(2p+l)
p2

U2=Ul U2=l~ll U2=’Ul
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This means that in the four regions, the companents of

used in Equation (C.1)

I

P11

Ay111

WIV

reduce, when p \i’ to the

5 =

>
i

$I

Aprr, 111,11V ~

fi [Aplrp] P;(cos 8)
p=1

p3 r(p+1)

EE —EBé——- Pl(cos 8)
LD | P

form
}: A 1 P P;(cos 9)
p=1 ’
U2=Ul
o0
-(p+)1 .1
2: B r P (cos 0O)
p4 P
p=1
HmHy
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the vector potentials

(C.25a)

(C.25b)

(C.25¢c)

(C.264d)

(C.26a)

(C.26b)
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The mathematical expressions for Apl and Bp4 (see Equations (C.24) and (C.23),

respectively) for the ferromagnetic spherical shell surrounding a thin current band,

in the limit as My = Wy, are the same as the coefficients Apl and BP2 (see Reference

7, Appendix B), respectively, for the components of the vector potentials in the

regions of the current band in vacuum. For comparison, the coefficients for the

current band problem are

Ay BPZRI(ZP+1) (C.27a)
U, J (98)
lp (C.27b)

B =
p2 P;(cos 0)R] P*2) (2p+1)

and the coefficients for the ferromagnetic shell problem with uz = W, are

1" BP4RI(2p+1) (C.28a)

w

) ulJp(e)
pA P;(cos G)RI(p+2)(2p+l)

(C.28b)
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APPENDIX D

DERIVATION OF THE COEFFICIENTS OF THE VECTOR POTENTIAL FOR A
SPHERICAL SHELL WITH INTERNAL AND EXTERNAL INFINITESIMALLY
THIN SPHERICAL CURRENT BANDS AND THE REDUCTION OF THE
MAGNETIC VECTOR POTENTIAL TO THAT OF A THIN BAND

IN VACUUM WHEN IN THE LIMIT Hy EQUALS Hq

REDUCTION OF THE COEFFICIENTS

" In this appendix, the coefficients are derived for the vector potential in
regions I through V for a ferromagretic spherical shell with internal and external,
infinitely thin, spherical current bands. For a detailed discussion of the ferro-
magnetic problem, see the body of this report. The components of the magnetic vec-

tor potential in each region are given by

- _ < plpl
AI = AwI = 2: [Aplr ]Pp(cos 9) (D.1la)
p=1
A=A = Y AP+ 22 (o ) (D.1b)
11 Wit p2 LetD | |
p=1
A = A = ii A P +‘—E§Ei~— Pl(cos 4) (D.1c) é
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The coefficients in Equations (D,la) through (D.le) are obtained by substituting
these equations into boundary condition (Equations (D.2a) through (D.2h).

P
P
‘E A T A at r = R, (D.2a)
A
| Arr T Ao at r = R, (D.2b)
Arrr 7 Ay at r = Ry (D.2¢) '
Ay = &y at r = R, (D.2d)
1 1 2 1 1 3
_ El_ = 3¢ (rAII) + -—1 T (rAI) = Jl(e) r = Rl (D.2e)
1 1 o9 1 1 3
- = = — = = r =R
MoT oot (raArp) tu T (rA;) = 0 o (D.2f)
1 13 1 1 3 _
-— = == + — = = = r = R
Wt or (xAry) n, T or (rArpp) =0 3 (D.2g)
1 1 3 1 1 3 - r =R
Tyt d (rhy) + L T or (rApy) = J2(8) 4  (D.2h)
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After the appropriate substitutions are made, the following equations are obtained:

P _ p —(p+l)]
ARY [APZRI + B R (D.3a)

P —(p+l) _ P -(p+l)]
{APZRZ + Bp2R2 J = [AP3R2 + BP3R2 (D.3b)
P -(p+1)] _ p —(p+l)]
{AP3R3 + Bp3R3 ] = [Ap4R3 + BpaRj (D.3c)
p -(p+1D7 _ -(p+l)]
[APARA +B (R, ] - [BpSRl. (D.3d)
1 - - J 6
) *I—A rR(PD gy gL LT, q D] T (D.3e)
H p2 1 p2 1 U pl1 1
* 1 Pp(cos 5)

1 (p-1) Sy, - X
- A [AP,S([HI)RZ - pB_ kP )]* N {‘\pz("“)Rép SRR (p+2)] -0

ks p3 2 p2 2
(D.3f)
1 L (p-1) —(p+2) 1 (p-1
- —|a +1 - : — (p=1) o(p+2) | =
. [lp"«‘(p l)R3 poAR} :]+ . l}\1)3([1+l,)1\3 - poBI\'3 p )] 0
(D.3g)
i ~(p+2) 1 (p-1 ~(p+2) T2
L [pR(,’ B ,)]+ ——[A LD RPTY PR R, }z AN (D.30)
B p b Lpe 4 Pp((‘os )

153




These algebraic equations provide eight simuitaneous equations with eight unknowns,
which can be solved for the coefficients Ap4 and BP4 by algebraic manipulation.
Solving Equations (D.3h) and (D.3d) for Bp4 and equating the results to solve

for A yields

p4’

J (6
a - My P2( )
p (2p+l)R£p_l)P;(cos 8)

[x] (D.4)

Solving Equations (D.3b) and (D.3f) for B and equating the results to solve for

p3
Ap2’ yields

M
A ((2 +l)>R(2p+l) +<_g -l)B
p3 2 p2

p M
Asp = o (D.5)
1 4.2 (p+1) R(2p+1)
My P 2
Solving Equation (D.3a) and (D.3e) for Apl and equating the results to solve for
sz, yields
Hyd 2 (6)
S e LY
(2p+l)R1 Pp(cos 8)

Solving Equation (D.3c¢c) and (D.3g) for Bpé and equating the results to solve for

Ap3’ yields

154




- W,

coniy

vy ¢

K ’ M M (D.8)
O T RN )
3 Ho D Uz >
[X] = Ap4 (D.9)

Now, using Equation (D.3b) and the results of Equations (D.4) through (D.9) to

solve for Bp3’ yields

RO[x1(s] - Ry [x}[s] [r] - (¥][a] &% - [Y]Rg(p+l)

"3 ) ) (D.10)

p3

w.J L (0)
where [X] = % Pi) - 0.11)
<2p+1)<R4p' )p (cos ©)
P
: HoJ ()
[YJ ) E(RiZ) 1 (D.12)
(2p+l)(Rl P >PP(COS 0)

((22+1)) R(2p+1)
[T] ) = 2 (D.13)

1 +fl£ A1) \)p(2p+D)
“1 P 2
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Now B

The constants have now been found. After the numerical values of Bp3’ Ap&’ and B

(3

(1+ ] ((P+l))}R(2p+l)
Ul P

(5

R(ZP+1)[1 + El (Sgtllﬂ
3 uz P

—
>
—
"

s
==
1]

and A can be found from

p4* Bpss pl

_ (2p+l) (2p+1)
BP4 Ap3R3 + Bp3 - Ap4R3
_ H,aJ ,(6)
Bs = = Ay ((g+1) ) R£2p+l) +B 4 17p2

P pé Pi(cos S)pRZ(p+2)

- ~(2p+l)
By = Ay + B R

(D.14)

(D.15)

(D.16)

(D.17)

(D.18)

p2

are calculated for a specific problem, the numerical values for the other coeffi-

cients can be obtained from the following equations
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gk hons s

Ay =B (v] + [x]ﬁﬂ = [2] (D.19a)

- (2p+1) (2p+1)
Bp4 = AP3R3 + Bp3 - Ap4R3 (D.19b)
_ (p+1) \ . (2p+l)
Bp5 AP4 <-—RE—— R, + Bp4
u,J o (6)
+ L p2 (D.19¢)

P;(cos O)pRI(p+2)

Ay = [T] At [AJ B, (D.19d)

—(2p+1
Ay = Ayt szRl( ptl) (D.19e)

REDUCTION OF THE MAGNETIC POTENTIAL WHEN UZ EQUALS Ul AND Jl(e) =0

The coefficients Apl’ ApZ’ Ap3’ Ap&’ sz, Bp3, Bp&’ and Bp5 for the potentials
are now evaluated for the system consisting of a ferromagnetic shell with
permeability Hy surrounded by an infinitesimally thin current band (JZ) in a homo-
geneous medium with permeability Hys in the limit as p, = ul(Jl) = 0). The varia-

bles are defired in Figure 9 located in the text, When UZ is set equal to ul the
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problem reduces to that of finding the potentials in the two regions of a simple
current band (see Appendix B of Reference 7), because the ferromagnetic shell will
now have a permeability My equal to that of the homogeneous medium with permeability
My

In this limit the coefficients should assume the following form:

Apl = Ap2 = Ap3 = Ap4 (D.20a)
sz = Bp3 = BP4 =0 (D.20b)
AL =B <R5(2P+1>'> (D.20c)

and where A and B
pl P>

regions for the spherical band problem.7 If the coefficients assume this mathemati-

should reduce to coefficients for the potentials in the two

cal form it will prove that the mathematical foxm of the coefficients for the spheri-
cal shell surrounded by a thin current band are mathematically correct.

From Equation (D.10) Bp3 is

R[S - B[ - (] ] = -(x] i

& & (W] - % D - 88 [

B , (D.21)

B = =
Now Limit By = 0 (0.22)
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0
*

becaus; [Y] =0 for Jp =0

The expression for B is zero because Jpl(ﬂ) = 0. The expression for ApZ

p2
(see Equation (D.5)) 1is

Ay = A [T] +B [A] (D.23)
because [TJ = 1 and sz =0
H2=Ul
Ap2 = Ap3 (D.24)

The expression for Apl (see Equation (D.18)) is

—(2p+1
Ay= At szRl( p+l) (D.25)

and because Bp =0




i

Lo,y o

o e
94

The expression for AP3 (see Equation (D.7)) is

83 = B3 (W] + [¥][s]

and because B I =0
p3

Ay [x] = A,

u,J ,(8)
Now Apl = Ap2 = A 3 = Ap4 = i g%S 1
P (2p+1)R4p Pp(cos 0)
The expression for BP4 (see Equation (D.1l6)) is
(2p+l) (2p+l)
B = A R + B - A R
p4 p3 3 p3 P43

Because in the limit My = Ug, A = Ap&’ and because Bp3 = 0 we have

p3
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(D.27)

(D.28)

(D.29)

(D.30)

(D.31)
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The expression for BpS (see Equation (D.l7)) is

J
B, =-A <52i51> RE2PH) L5 "17p2 (0 (D.32)
P> i\ p ) P Ry PR (cos )
In the limit
u,J ,(8)
B s = gimit B = o 17p2 -
-(p
) T R4 (2p+1)Pp(cos 6)

HoSHy (D.33)

This means that in the five regions, the potential used in Equations (D.l) reduce,

when pz = Ul and Jpl = 0, to the form
A < P\pl
i, 11, 111, v 2 (%p1| T ]Pplees ®
p=1 (D.34a)
112=Ul
-4
1 1
= B ——
va > b5 s Pp(cos 8)
p=1 r
HLy=U
1 (D.34b)
Hid (1)
1 p2
because A=A g T A g = A= = (D.35a)
P P P P (2p+1)R2p l)Pllj(cos 8)

le6l

et A 1 st

et v L o




Ry
IS e an

B = Bp = B =0 (D'35b)

L Hyd 5 ®)
P> RZ(p+2)(2p+l)P;(cos 8)

(D.35c)

For comparison, the coefficients in Reference 7 are (primes are used for distinc-

tion)

I _ gt o(-2p-1)
Apl szRl (D.36a)
w.J (8)
B! = lp (D.36b)

p2 RI(p+2)(2p+l)Pi(cos 8)

When making the comparison one lets R4 = Rl'
REDUCTION OF THE MAGNETIC POTENTIAL WHEN uz EQUALS “1 AND JZ(G) =0

In a manner similar to that of the preceeding section, the coefficients are
evaluated for the system consisting of an infinitesimally thin current band[Ji(G)]
surrounded by a ferromagnetic shell with permeability Moy, in a homogeneous medium
with permeability “l’ in the limit as “2 = ul.

In this limit the coefficients should assume the following form

Ap2 = Ap3 = Ap4 =0 (D.37a)

>
[

o

s

ol = p2Ry (D.37b)

b5 (D.37¢)

p2 p3 pé
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From Equation (D.5), A ) is
P

U
(2p+1)\ (2p+1) ("2
AP3 ( D R2 + Y 1 sz

1
Ap2 = — ;
1 +__2‘ M) R&2p+l)
My P 2
A = fimit A _, = A
p2 2 p3
H,=H
_ 2 "1
uz—ul

The expression for B _ (see Equation (D.6)) is

p2

s - H&fpl(e)

EY]
p2 (2p+l)RI(p+2)Pi(cos g) {

The expression for AP“ (see Equation (D.4)) is

. J L (8)
A 4= L p2 i = [X]
p (2p+l)R§p_l)Pp(COS 8)

and because J (1) = 0
Pe

The expresn cion ton “1'5 (sce Equation (D.10)) reduces when
)
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(D.38)

(D.39)

(D.40)

(D.41)

(D.42)




‘- w.J . (8)
. \ B , - _(;gl) : (D.43)
: P (2p+1)R] Pp(cos 9)
o Ho™y
because, when “2 = uland JpZ = Q
[x] =0 (D.44a)
u.J . (8)
[Y] = _%%i) - (D.44D)
(2p+l)Rl p Pp(cos 8)
[T] =1 (D.44c)
[A] =0 (D.44d)
[w] -0 (D.44e)

The expression for Ap3 (Equation (D.7)) is

[}

Ay =B, [w] +[x](s] (D.45)

and because [w] = [X] = 0 when Hy = My, and JpZ = 0, we have

Ap3 =0 (D.46)
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Similarly, for Ap2

ApZ B Ap3 [T] * Bp2 [A]

and because Ap3 = 0 and [A] = 0 when uz = ul, we have

P2

The expression for Apl (Equation (D.18)) is

= -(2p+1)
pl p2 p2'1l

Because Apz = 0, Equation (D.49) yields

- -(2p+l)
Apl BpZRl

For Bp4’

using Equations (D.16), (D.46), and (D.42) we have

(D.47)

(D.48)

(D.49)

(D.50)

(D.51)

Similarly, fex Bp5, using Equations (D.17) and (D.42), and the fact that Jp2 = 0,

we have
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=B (D.52)

Thus, we have shown that when W, = W, and Jpz(e) = 0,

Ap2 = Ap3 = Ap4 =0 (D.53a)

= -(2p+l)
AL = BooR) (D.53b)
bigd 1 (6)
17pl
B,=B,=B, =B, = (D.53c)
p2  p3 P4 pS (2p+l)RI(p+2)P;(cos 8)

Once again this means that, in the five regions, the potentials used in Equations

(D.1) reduce when My = uz and Jp2 = 0 to the form

- 5 P)\pl
AIJ)I Z <Apl r )Pp(cos 8)
p=1
}JZ:ul (D.Sl&a)
MNi11,111,1v, V 2%- p2 —iD | Ppleos (D,54b)
p= ’

U2=Ul
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For comparison, the coefficients in Reference 7 (primes are used for distinction)
are

/1 (<2p-1)
ol = BpoRy

J (6
Bl, . My p( )

p2 RI(p+2)(2p+1)P;(cos 8)
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(D.55a)

(D.55b)
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APPENDIX E

FERROMAGNETIC PROLATE SPHEROIDAL BODIES IN A CONSTANT
EXTERNAL INDUCING FIELD

INTRODUCTION

In previous work Brown and Baker8’9 derived the closed form mathematical
expressions for the magnetic flux density for various configurations of a ferromag-
netic spheroidal body surrounding and/or surrounded by a stationary current band of
azimutbal symmetry. The problem of determining the magnetic induction for a prolate
spheroidal body surrounding and/or surrounded by an infinitesimally thin current i
band can be generalized to include an external magnetic field. The superposition
principle discussed in the text of this report can be used in these cases to include
a constant external magnetic field. The magnetic induction in each region for a

three-dimensional magnetic spheroidal shell in an arbitrary external magnetic field

E§ is added to the magnetic induction for the corresponding region for the spheroidal
shell surrounding and/or surrounded by a stationary current band. The problem of
deriving the magnetic induction for a current band of finite width surrounding a

solid ferromagnetic spheroid can also be generalized to include an external magnetic

field ﬁé in a similar manner., Thus, the magnetic induction for a ferromagnetic
spheroidal body in an exterual magnetic field must be determined,

Both constant external field problems were solved by’Nixon6 of the Center. The
cluosed form mathematical soiutions for the magnetic induction for both constant
external field problems were presented in Reference 6 in Cartesian coordinates. It
was necessary to convert these mathematical expressions to spheroidal coord.sates

to be compatible with this work.

SOLLID FERROMAGNETIC SPHEROID IN AN EXTERNAL INDUCING FIELD

The solid ferromagnetic prolate spheroid in a constant external inducing field
is shown in Figure (E.1). The permeability of the solid spheroid is My and the
boundary of the is determined by n = N, = constant. The permeability Mo of
vacuum that is external to the splheroid is denoted by Hy - The constant arbitrary
magnetic field is designated as H.

it is assumed that “2 in the spheroid is constant, and that Ul is constant in

the rey ion external to the spheroid. Because there are no currents in any regions

in the problem, the magnetic field Il can be expressed as the negative of the
169
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gradient of a magnetic scalar potential ¢m in regions I and II, respectively.

ﬁi = - V¢Im for 0 <n E_nl (E.la)

| Hpo= - Vo for ny<n < (E.1b)
where §i = uzﬁi (E.lc)
Brp o Mpf; (E.1d)

The major step toward solving this problem is to determine the solutions of the
scalar Laplace's equation in regions I and II which satisfy the boundary conditions

at n = ny- In terms of B and ﬁ; the magnetostatic boundary conditions are

-BJ).n,, =0 at n (E.2a)

L}
o |
—

=0 at n = Ny (E.2b)

where ;iZ is the unit vector normal to the surface of the spheroid, outward from

region 1 to region 1I, The general expression of ¢Im and ¢IIm which satisfy

Laplace's equation in regions I and 1I, are:
p q s
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i A

% 4
by, = AEv + B [P D] cos v+ M [P avH] sin (E.3a)

:

¢Ilm = D[—2+€Rn (%{%}]v + (E cos y+F sin ) zgifzgg - (gz-l)%ln (%;%) (l_vz)%

1
. ]
- Hozaiv - (Hox cos Y + Hoy sin V) a[‘gz-l)(l-vz)] (E.3b)

where a is one-half of the focal length.

The coefficients are determined by the magnetostatic boundary conditions,
Equations (E.2a) and (E.2b).

|
2
Ao 2 a1 -5 .1 .
= E.
D, g2_1 (E.b4a)
1
Hoz a gl
b= —% (up=hp) (E.4b)
5 - 4ul H a
2 (E.4c)
(‘51">D2
E = HOX a él(uz—ul)
D2 (E.44d)
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Fhat i}

Tt

- 4u. H a
M= 1 -
2 D
()
) Hoy a gl(uz—ul)
F= D
2
h 3 =
where &1 cosh ”1
2
2y gl Elﬂl
D, = — — - 2u. + £ (U )n | —
1 ’ -
(r'-l) 27 12T 6171
vl
. 2 ) 3 2 €1+1
DZ = ;—‘,2—*‘1—(;114-‘12(,1 > - 9U1 + ‘;1(“1—“2)’4" 7 1
)1'

. , . , 6
For Aetails of this derivation the reader should consult Nixon. The authors

(E.4e)

(E.4f)

(E.b4g)

(E.4h)

(E.41)

have

changed his mathematical expressions for the magnetic induction in regions I and II

from Cartesian to spheroidal coordinates. This makes the expressions for the
netic induction compatible with the work presented in the text of this report.

These mathematical expressions are, in regions 1 and II,
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e
-u, (sinh n)
B = 2 s cos 8 + B cosh n(l-cos 6) cos |
ni 5 s 2 9 %
a(sinh n + sin 6) (cosh n-—l)
(E.5a)
M cosh n(l-cosZG)
+ : sin ¥
(coshzn-l)
( li
p, (sin 0) . 2
Byy = 2 ” A coshn - (B cole)+Msin1)))(-‘£§—h—-rl'-4—)1;— cos B
a(sinhzn + sinze) (l—cosze)
(E.5b)
. . % »
BWI = 2 (- B sin y + M cos ¥) (coshzn-l) (l-cosze)
a(sinh n sin 6)
_ —ul(smhn) 2 coshn coshn+l
B = -D-—~——-————-—+SL(-————- cos D
nI1 L cosh?n-1 coshn-1
a(sinhzn + sinZB) s -
2 2 coshn (coshn+1
+ 3/2 + ( 2 )1% - ( 2 )Lﬁ An coshn-1
(cosh n-l) cosh ' n-1 cosh ' n-1
]
(1 - cosz'e) (E cos Y + F sin l,')- Hoz a cos 0O
(1-cos2e)”
l-cos™®
- a (Hox cos y + Hoy sin w) coshn ) i
cosh n—l) (E.5c)
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Y, {(sin 8) A
1 coshn+l
BGII = D[}Z + coshn n (coshn-l):]

1
a(sinhzn + sinz(-))1

2 h
- [%E cos y + F sin ) el Z N co: n)%
(1 - cos 6) (cosh n-1

%
2 coshn+l
- (cosh n—l) 2n (——-—] ‘Hoz a coshn

coshn-1
(costn-1)”
+(Hox cos y + Hoy sin ¢) 5 Sos Olcosh ngl
(l - cosze)
1
B, . = ! (-E sin ¥ + F cos ¥) (1 - caszeii
vit a(sinbn sind)
2 cosh ) 2, 1) hn+l
cos coshn
[___2—_1; - (cosh n_l) on (m]
(cosh n_l)

L Y4
+(HoX sin ¢ -~ Hoy cos W)a (coshzn—l) (1 - cosze)
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FERROMAGNETIC PROLATE SPHEROIDAL SHELL IN AN EXTERNAL INDUCING FIELD

The problem of the spheroidal shell is similar to the problem of the solid
spheroid. The inner boundary of the prolate spheroidal is N, and the outer boundary
is n, (see Figure E.2)). The permeability of the magnetic material in the shell is
Hy and the permeability Hy of vacuum that is internal and external to the shell is
denoted by My The constant external magnetic field is designated by Ho.

The problem of deriving the closed form mathematical expressions for the mag-
netic flux density in each of the three regions (I through III) was solved in detail
by Nixon.6 The problem was solved in a method exactly analogous to the method used
to solve the problem of a solid spheroid in a constant external magnetic field..

For details of the derivation, Reference 6 should be consulted.
The general expressions for the magnetic scalar potential ¢m in regions I

through III are

Pm = A gv+B [(&2—1)(1-v2>}% cos

1

+ M [(&32--1)(1-‘\)2)],i sin { (E.6a)
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Figure E.2 ~ Ferromagnetic Prolate Spheroidal Shell in a
Constant External Magnetic Field
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¢111m = D[—Z + £4n (—ét—i)jl\) +[E, cos Y + F' sin 1{)}

o ()" s (2 | () 5,y @ £ o

1

'[Hox cos Y+ Hoy sin q;jla [(Ez—l)% (l-\)z) f] (E.6c)

The coefficients are determined by the usual magnetostatic boundary conditions
on the spheroidal surfaces at n = Ny and n = n,. The coefficients determined by

this method are

2 2
H a p.u 28 2E
S B Y RN I [ g (E.7)
D 2 2
£1-1 £-1
1 2
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(Note: Above equation continued on next page) .
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(Note: Above equation continued on next par :).
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Using the symmetry conditions6 that exist in this problem, the last four con-
stants (M’, F’, K, and L’) are obtained from the previous equations by simple
substitution. Therefore, M’ F', K’, and L' are determined by substituting H, oy for

Hox in Equations (E.12) through (E.16).

184

e e

|
i
|
!
]




P v
R el

The authors have changed Nixon's mathematical expressions for the magnetic
induction in regions I through III from Cartesian to spheroidal coordinates. This
makes the expressions for the magnetic induction compatible with the work presented

in the text of this report. The mathematical expressions in regions I through III

are
: : - 1
Ba -4, (sinh M) 4 h n(1-cos” 8)*
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9 L
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A coatton)t (E.17a)
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(Note: Above equation is continued on next page.)
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